热活化多孔炭布制备超低自放电免梭锌碘电池。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-23 DOI:10.1002/cssc.202501455
Ping Wu, Hongli Lin, Qinghua Wang
{"title":"热活化多孔炭布制备超低自放电免梭锌碘电池。","authors":"Ping Wu, Hongli Lin, Qinghua Wang","doi":"10.1002/cssc.202501455","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc-iodine (Zn-I<sub>2</sub>) batteries are promising for grid-scale energy storage but suffer from severe polyiodide shuttling and rapid self-discharge. Here, a thermally activated carbon cloth (CC450) that simultaneously addresses iodine confinement and reaction kinetics through precisely engineered hierarchical porosity is reported. By optimizing oxidative calcination at 450 °C in air, CC450 develops a unique pore structure with nanopores for strong I<sub>3</sub> <sup>-</sup> adsorption and interconnected macropores for rapid ion transport, while maintaining the intrinsic conductivity and flexibility of CC. The CC450 cathode achieves an exceptional balance of performance metrics: high areal capacity, ultralow self-discharge (3.05% in 24 h), and outstanding cycling stability (94.63% capacity retention over 1000 cycles), which represents the best-reported performance for binder-free carbon electrodes in Zn-I<sub>2</sub> batteries. Mechanistic studies reveal that CC450's 12-fold reduction in charge-transfer resistance and low activation energy for I<sup>-</sup> oxidation stem from its optimal surface chemistry and pore hierarchy. The self-discharge tests and UV-vis spectroscopy confirm efficient iodine shuttle suppression. Unlike complex nanomaterial-based hosts, CC450 is fabricated through a scalable ambient-air process, offering immediate industrial relevance. This work provides critical insights into pore-engineered carbon hosts for metal-iodine batteries and establishes a generalizable strategy for achieving high-energy, long-life energy storage systems.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501455"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore-Engineered Carbon Cloth via Thermal Activation for Shuttle-Free Zinc-Iodine Batteries with Ultralow Self-Discharge.\",\"authors\":\"Ping Wu, Hongli Lin, Qinghua Wang\",\"doi\":\"10.1002/cssc.202501455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc-iodine (Zn-I<sub>2</sub>) batteries are promising for grid-scale energy storage but suffer from severe polyiodide shuttling and rapid self-discharge. Here, a thermally activated carbon cloth (CC450) that simultaneously addresses iodine confinement and reaction kinetics through precisely engineered hierarchical porosity is reported. By optimizing oxidative calcination at 450 °C in air, CC450 develops a unique pore structure with nanopores for strong I<sub>3</sub> <sup>-</sup> adsorption and interconnected macropores for rapid ion transport, while maintaining the intrinsic conductivity and flexibility of CC. The CC450 cathode achieves an exceptional balance of performance metrics: high areal capacity, ultralow self-discharge (3.05% in 24 h), and outstanding cycling stability (94.63% capacity retention over 1000 cycles), which represents the best-reported performance for binder-free carbon electrodes in Zn-I<sub>2</sub> batteries. Mechanistic studies reveal that CC450's 12-fold reduction in charge-transfer resistance and low activation energy for I<sup>-</sup> oxidation stem from its optimal surface chemistry and pore hierarchy. The self-discharge tests and UV-vis spectroscopy confirm efficient iodine shuttle suppression. Unlike complex nanomaterial-based hosts, CC450 is fabricated through a scalable ambient-air process, offering immediate industrial relevance. This work provides critical insights into pore-engineered carbon hosts for metal-iodine batteries and establishes a generalizable strategy for achieving high-energy, long-life energy storage systems.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501455\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501455\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501455","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌-碘(Zn-I2)电池是一种很有前景的电网级储能电池,但其存在严重的多碘离子穿梭和快速自放电的问题。本文报道了一种热活性炭布(CC450),它通过精确设计的分层孔隙度同时解决了碘约束和反应动力学问题。通过优化空气中450°C的氧化煅烧,CC450形成了独特的孔隙结构,具有强I3吸附的纳米孔和快速离子传输的互联大孔,同时保持了CC固有的导电性和柔韧性。高面积容量,超低自放电(24 h自放电3.05%),出色的循环稳定性(1000次循环后容量保持率为94.63%),这是目前报道的锌- i2电池中无粘结剂碳电极的最佳性能。机理研究表明,CC450的电荷转移电阻降低12倍,I-氧化活化能低源于其最佳的表面化学和孔隙结构。自放电试验和紫外-可见光谱证实了有效的碘穿梭抑制。与复杂的基于纳米材料的宿主不同,CC450是通过可扩展的环境空气过程制造的,具有直接的工业意义。这项工作为金属碘电池的孔工程碳宿主提供了重要的见解,并为实现高能量、长寿命的能量存储系统建立了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pore-Engineered Carbon Cloth via Thermal Activation for Shuttle-Free Zinc-Iodine Batteries with Ultralow Self-Discharge.

Zinc-iodine (Zn-I2) batteries are promising for grid-scale energy storage but suffer from severe polyiodide shuttling and rapid self-discharge. Here, a thermally activated carbon cloth (CC450) that simultaneously addresses iodine confinement and reaction kinetics through precisely engineered hierarchical porosity is reported. By optimizing oxidative calcination at 450 °C in air, CC450 develops a unique pore structure with nanopores for strong I3 - adsorption and interconnected macropores for rapid ion transport, while maintaining the intrinsic conductivity and flexibility of CC. The CC450 cathode achieves an exceptional balance of performance metrics: high areal capacity, ultralow self-discharge (3.05% in 24 h), and outstanding cycling stability (94.63% capacity retention over 1000 cycles), which represents the best-reported performance for binder-free carbon electrodes in Zn-I2 batteries. Mechanistic studies reveal that CC450's 12-fold reduction in charge-transfer resistance and low activation energy for I- oxidation stem from its optimal surface chemistry and pore hierarchy. The self-discharge tests and UV-vis spectroscopy confirm efficient iodine shuttle suppression. Unlike complex nanomaterial-based hosts, CC450 is fabricated through a scalable ambient-air process, offering immediate industrial relevance. This work provides critical insights into pore-engineered carbon hosts for metal-iodine batteries and establishes a generalizable strategy for achieving high-energy, long-life energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信