Matthias Eberl, Manuel Mata Forsberg, James E McLaren, Eva Sverremark-Ekström
{"title":"微生物反应性人γδ T细胞:金黄色葡萄球菌的特例。","authors":"Matthias Eberl, Manuel Mata Forsberg, James E McLaren, Eva Sverremark-Ekström","doi":"10.1111/imcb.70060","DOIUrl":null,"url":null,"abstract":"<p><p>Vγ9/Vδ2 T cells represent the largest γδ T-cell population in human blood and possess a unique responsiveness towards microbial organisms by sensing the metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) in the context of the butyrophilin family members BTN2A1 and BTN3A1. Curiously, the bacterium Staphylococcus aureus does not produce HMB-PP but appears to be capable of inducing activation, cytokine expression and proliferation of Vγ9/Vδ2 T cells regardless, through a largely unknown mechanism. We here provide a comprehensive review of the existing literature around Vγ9/Vδ2 T-cell responses to S. aureus and discuss potential pathways, ligands and biological functions.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbe-responsive human γδ T cells: the peculiar case of Staphylococcus aureus.\",\"authors\":\"Matthias Eberl, Manuel Mata Forsberg, James E McLaren, Eva Sverremark-Ekström\",\"doi\":\"10.1111/imcb.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vγ9/Vδ2 T cells represent the largest γδ T-cell population in human blood and possess a unique responsiveness towards microbial organisms by sensing the metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) in the context of the butyrophilin family members BTN2A1 and BTN3A1. Curiously, the bacterium Staphylococcus aureus does not produce HMB-PP but appears to be capable of inducing activation, cytokine expression and proliferation of Vγ9/Vδ2 T cells regardless, through a largely unknown mechanism. We here provide a comprehensive review of the existing literature around Vγ9/Vδ2 T-cell responses to S. aureus and discuss potential pathways, ligands and biological functions.</p>\",\"PeriodicalId\":179,\"journal\":{\"name\":\"Immunology & Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology & Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/imcb.70060\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/imcb.70060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
v - γ9/ v - δ2 T细胞是人体血液中最大的γδ T细胞群,通过感知亲丁酸蛋白家族成员BTN2A1和BTN3A1中的代谢物(E)-4-羟基-3-甲基-但-2-烯基焦磷酸(HMB-PP),对微生物具有独特的反应性。奇怪的是,金黄色葡萄球菌不产生HMB-PP,但似乎能够诱导v γ - 9/Vδ2 T细胞的活化、细胞因子表达和增殖,其机制在很大程度上是未知的。本文综述了Vγ9/Vδ2 t细胞对金黄色葡萄球菌的反应,并讨论了潜在的途径、配体和生物学功能。
Microbe-responsive human γδ T cells: the peculiar case of Staphylococcus aureus.
Vγ9/Vδ2 T cells represent the largest γδ T-cell population in human blood and possess a unique responsiveness towards microbial organisms by sensing the metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) in the context of the butyrophilin family members BTN2A1 and BTN3A1. Curiously, the bacterium Staphylococcus aureus does not produce HMB-PP but appears to be capable of inducing activation, cytokine expression and proliferation of Vγ9/Vδ2 T cells regardless, through a largely unknown mechanism. We here provide a comprehensive review of the existing literature around Vγ9/Vδ2 T-cell responses to S. aureus and discuss potential pathways, ligands and biological functions.
期刊介绍:
The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.