生物陶瓷和抗菌金属氧化物增强纳米复合材料用于颌面骨固定。

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rahul Sharma, , , Neha Mehrotra, , , Inderdeep Singh, , and , Kaushik Pal*, 
{"title":"生物陶瓷和抗菌金属氧化物增强纳米复合材料用于颌面骨固定。","authors":"Rahul Sharma,&nbsp;, ,&nbsp;Neha Mehrotra,&nbsp;, ,&nbsp;Inderdeep Singh,&nbsp;, and ,&nbsp;Kaushik Pal*,&nbsp;","doi":"10.1021/acsabm.5c01406","DOIUrl":null,"url":null,"abstract":"<p >This study develops third-generation poly(lactic acid) (PLA) nanocomposites with tailored degradation, osteoconductivity, and mechanical properties to address the issue of metallic maxillofacial implants, eliminating secondary removal surgeries while providing superior biocompatibility and reducing stress shielding. Hydroxyapatite (HAP), bioceramic-natural-bone-mimicking eggshell-derived nanoparticles (ESNP), and antimicrobial metal oxides (TiO<sub>2</sub> and ZnO) were synthesized using wet chemical precipitation, ball milling, sol–gel, and hydrothermal techniques, respectively, and incorporated into PLA matrices to develop PLA/ES (PE), PLA/HAP (PH), PLA/ES/TiO<sub>2</sub> (PET), PLA/HAP/TiO<sub>2</sub> (PHT), PLA/ES/ZnO (PEZ), and PLA/HAP/ZnO (PHZ) using solvent casting. Structural and compositional analyses of the synthesized nanomaterials and composites were performed using Fourier Transform Infrared Spectroscopy (FT-IR), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Field-Emission Scanning Electron Microscopy (FE-SEM). Mechanical testing revealed that PE and PH composites achieved tensile strengths of 48.66 ± 1.27 MPa and 52.71 ± 0.45 MPa, tensile moduli of 1.94 ± 0.03 GPa and 2.14 ± 0.13 GPa, and Shore D hardness of 79.29 ± 1.31 SHN and 81.25 ± 0.90 SHN, respectively. The incorporation of NPs not only improved surface roughness (2.53 μm) and enhanced hydrophilicity (∼65°) but also exhibited increased biodegradation rates (PEZ: 14.83 ± 0.49%, PHZ: 10.48 ± 0.35% over 9 weeks). Cytocompatibility evaluations using osteoblast (MG-63) cells confirmed ≥ 80% cell viability, with hemolysis rates ≤ 2.82%, demonstrated enhanced osteoconductivity through improved cell adhesion and proliferation, and superior antibacterial activity for the composites containing metal oxides, highlighting their potential suitability for low-load-bearing zones of the maxillofacial region (maxilla and zygoma) implants.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 10","pages":"9393–9413"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioceramic and Antimicrobial Metal Oxide Reinforced Nanocomposites for Maxillofacial Bone Fixation\",\"authors\":\"Rahul Sharma,&nbsp;, ,&nbsp;Neha Mehrotra,&nbsp;, ,&nbsp;Inderdeep Singh,&nbsp;, and ,&nbsp;Kaushik Pal*,&nbsp;\",\"doi\":\"10.1021/acsabm.5c01406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study develops third-generation poly(lactic acid) (PLA) nanocomposites with tailored degradation, osteoconductivity, and mechanical properties to address the issue of metallic maxillofacial implants, eliminating secondary removal surgeries while providing superior biocompatibility and reducing stress shielding. Hydroxyapatite (HAP), bioceramic-natural-bone-mimicking eggshell-derived nanoparticles (ESNP), and antimicrobial metal oxides (TiO<sub>2</sub> and ZnO) were synthesized using wet chemical precipitation, ball milling, sol–gel, and hydrothermal techniques, respectively, and incorporated into PLA matrices to develop PLA/ES (PE), PLA/HAP (PH), PLA/ES/TiO<sub>2</sub> (PET), PLA/HAP/TiO<sub>2</sub> (PHT), PLA/ES/ZnO (PEZ), and PLA/HAP/ZnO (PHZ) using solvent casting. Structural and compositional analyses of the synthesized nanomaterials and composites were performed using Fourier Transform Infrared Spectroscopy (FT-IR), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Field-Emission Scanning Electron Microscopy (FE-SEM). Mechanical testing revealed that PE and PH composites achieved tensile strengths of 48.66 ± 1.27 MPa and 52.71 ± 0.45 MPa, tensile moduli of 1.94 ± 0.03 GPa and 2.14 ± 0.13 GPa, and Shore D hardness of 79.29 ± 1.31 SHN and 81.25 ± 0.90 SHN, respectively. The incorporation of NPs not only improved surface roughness (2.53 μm) and enhanced hydrophilicity (∼65°) but also exhibited increased biodegradation rates (PEZ: 14.83 ± 0.49%, PHZ: 10.48 ± 0.35% over 9 weeks). Cytocompatibility evaluations using osteoblast (MG-63) cells confirmed ≥ 80% cell viability, with hemolysis rates ≤ 2.82%, demonstrated enhanced osteoconductivity through improved cell adhesion and proliferation, and superior antibacterial activity for the composites containing metal oxides, highlighting their potential suitability for low-load-bearing zones of the maxillofacial region (maxilla and zygoma) implants.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 10\",\"pages\":\"9393–9413\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsabm.5c01406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.5c01406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了第三代聚乳酸(PLA)纳米复合材料,具有定制的降解,骨导电性和机械性能,以解决金属颌面植入物的问题,消除二次移除手术,同时提供优越的生物相容性和减少应力屏蔽。采用湿法化学沉淀法、球磨法、溶胶-凝胶法和水热法分别合成了羟基磷灰石(HAP)、生物陶瓷-天然骨模拟蛋壳衍生纳米颗粒(ESNP)和抗菌金属氧化物(TiO2和ZnO),并将其掺入PLA基质中,采用溶剂铸造法制备了PLA/ES (PE)、PLA/HAP/TiO2 (PH)、PLA/ES/TiO2 (PET)、PLA/HAP/TiO2 (PHT)、PLA/ES/ZnO (PEZ)和PLA/HAP/ZnO (PHZ)。利用傅里叶变换红外光谱(FT-IR)、能量色散x射线光谱(EDX)、x射线衍射(XRD)和场发射扫描电镜(FE-SEM)对合成的纳米材料和复合材料进行了结构和成分分析。力学性能测试表明,PE和PH复合材料的抗拉强度分别为48.66±1.27 MPa和52.71±0.45 MPa,拉伸模量分别为1.94±0.03 GPa和2.14±0.13 GPa,邵氏D硬度分别为79.29±1.31 SHN和81.25±0.90 SHN。NPs的加入不仅改善了表面粗糙度(2.53 μm)和亲水性(~ 65°),而且还提高了生物降解率(9周内PEZ: 14.83±0.49%,PHZ: 10.48±0.35%)。使用成骨细胞(MG-63)细胞进行的细胞相容性评估证实,细胞存活率≥80%,溶血率≤2.82%,通过改善细胞粘附和增殖,显示出增强的骨导电性,并且对含有金属氧化物的复合材料具有优异的抗菌活性,突出了其在颌面部区域(上颌和颧骨)低负荷区域植入物的潜在适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioceramic and Antimicrobial Metal Oxide Reinforced Nanocomposites for Maxillofacial Bone Fixation

Bioceramic and Antimicrobial Metal Oxide Reinforced Nanocomposites for Maxillofacial Bone Fixation

This study develops third-generation poly(lactic acid) (PLA) nanocomposites with tailored degradation, osteoconductivity, and mechanical properties to address the issue of metallic maxillofacial implants, eliminating secondary removal surgeries while providing superior biocompatibility and reducing stress shielding. Hydroxyapatite (HAP), bioceramic-natural-bone-mimicking eggshell-derived nanoparticles (ESNP), and antimicrobial metal oxides (TiO2 and ZnO) were synthesized using wet chemical precipitation, ball milling, sol–gel, and hydrothermal techniques, respectively, and incorporated into PLA matrices to develop PLA/ES (PE), PLA/HAP (PH), PLA/ES/TiO2 (PET), PLA/HAP/TiO2 (PHT), PLA/ES/ZnO (PEZ), and PLA/HAP/ZnO (PHZ) using solvent casting. Structural and compositional analyses of the synthesized nanomaterials and composites were performed using Fourier Transform Infrared Spectroscopy (FT-IR), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Field-Emission Scanning Electron Microscopy (FE-SEM). Mechanical testing revealed that PE and PH composites achieved tensile strengths of 48.66 ± 1.27 MPa and 52.71 ± 0.45 MPa, tensile moduli of 1.94 ± 0.03 GPa and 2.14 ± 0.13 GPa, and Shore D hardness of 79.29 ± 1.31 SHN and 81.25 ± 0.90 SHN, respectively. The incorporation of NPs not only improved surface roughness (2.53 μm) and enhanced hydrophilicity (∼65°) but also exhibited increased biodegradation rates (PEZ: 14.83 ± 0.49%, PHZ: 10.48 ± 0.35% over 9 weeks). Cytocompatibility evaluations using osteoblast (MG-63) cells confirmed ≥ 80% cell viability, with hemolysis rates ≤ 2.82%, demonstrated enhanced osteoconductivity through improved cell adhesion and proliferation, and superior antibacterial activity for the composites containing metal oxides, highlighting their potential suitability for low-load-bearing zones of the maxillofacial region (maxilla and zygoma) implants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信