Manas Sharma, , , Yannick J. Franzke, , , Christof Holzer, , , Fabian Pauly, , and , Marek Sierka*,
{"title":"TURBOMOLE中分子和周期系统的密度泛函理论:理论、实现和应用。","authors":"Manas Sharma, , , Yannick J. Franzke, , , Christof Holzer, , , Fabian Pauly, , and , Marek Sierka*, ","doi":"10.1021/acs.jpca.5c02937","DOIUrl":null,"url":null,"abstract":"<p >This work provides a detailed overview of density functional theory (DFT) methods for treating molecular and periodic systems within the TURBOMOLE software package. The implementation employs Gaussian-type orbitals and is based on efficient real-space techniques and density-fitting approaches for Coulomb interactions. Recent developments are reviewed, including the treatment of relativistic effects with effective core potentials, the incorporation of spin–orbit coupling via two-component formalisms, and the extension to real-time time-dependent DFT (RT-TDDFT). Embedding schemes based on frozen-density and projection-based approaches are also discussed, enabling the combination of DFT with high-level correlated wave function methods and many-body perturbation theory for selected subsystems. Representative applications demonstrate the capabilities across bulk materials, surfaces, low-dimensional nanostructures, and adsorption processes. Additionally, a web-based graphical interface has been developed to support input generation, structure manipulation, and output analysis. By consolidating theoretical foundations, implementation strategies, and application examples, this work provides a reference for the use of periodic DFT methods in quantum chemical and materials science studies.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 39","pages":"9062–9083"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c02937","citationCount":"0","resultStr":"{\"title\":\"Density Functional Theory for Molecular and Periodic Systems in TURBOMOLE: Theory, Implementation, and Applications\",\"authors\":\"Manas Sharma, , , Yannick J. Franzke, , , Christof Holzer, , , Fabian Pauly, , and , Marek Sierka*, \",\"doi\":\"10.1021/acs.jpca.5c02937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work provides a detailed overview of density functional theory (DFT) methods for treating molecular and periodic systems within the TURBOMOLE software package. The implementation employs Gaussian-type orbitals and is based on efficient real-space techniques and density-fitting approaches for Coulomb interactions. Recent developments are reviewed, including the treatment of relativistic effects with effective core potentials, the incorporation of spin–orbit coupling via two-component formalisms, and the extension to real-time time-dependent DFT (RT-TDDFT). Embedding schemes based on frozen-density and projection-based approaches are also discussed, enabling the combination of DFT with high-level correlated wave function methods and many-body perturbation theory for selected subsystems. Representative applications demonstrate the capabilities across bulk materials, surfaces, low-dimensional nanostructures, and adsorption processes. Additionally, a web-based graphical interface has been developed to support input generation, structure manipulation, and output analysis. By consolidating theoretical foundations, implementation strategies, and application examples, this work provides a reference for the use of periodic DFT methods in quantum chemical and materials science studies.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"129 39\",\"pages\":\"9062–9083\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c02937\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.5c02937\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.5c02937","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Density Functional Theory for Molecular and Periodic Systems in TURBOMOLE: Theory, Implementation, and Applications
This work provides a detailed overview of density functional theory (DFT) methods for treating molecular and periodic systems within the TURBOMOLE software package. The implementation employs Gaussian-type orbitals and is based on efficient real-space techniques and density-fitting approaches for Coulomb interactions. Recent developments are reviewed, including the treatment of relativistic effects with effective core potentials, the incorporation of spin–orbit coupling via two-component formalisms, and the extension to real-time time-dependent DFT (RT-TDDFT). Embedding schemes based on frozen-density and projection-based approaches are also discussed, enabling the combination of DFT with high-level correlated wave function methods and many-body perturbation theory for selected subsystems. Representative applications demonstrate the capabilities across bulk materials, surfaces, low-dimensional nanostructures, and adsorption processes. Additionally, a web-based graphical interface has been developed to support input generation, structure manipulation, and output analysis. By consolidating theoretical foundations, implementation strategies, and application examples, this work provides a reference for the use of periodic DFT methods in quantum chemical and materials science studies.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.