量子姆潘巴效应

IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Filiberto Ares, Pasquale Calabrese, Sara Murciano
{"title":"量子姆潘巴效应","authors":"Filiberto Ares, Pasquale Calabrese, Sara Murciano","doi":"10.1038/s42254-025-00838-0","DOIUrl":null,"url":null,"abstract":"The Mpemba effect, in which a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics. In the past few years, notable theoretical and experimental progress has been made in understanding its occurrence in both classical and quantum systems. In this Perspective, we provide a concise overview of recent work and open questions on the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics, which give rise to distinct manifestations of this anomalous non-equilibrium phenomenon. We discuss key theoretical frameworks, highlight experimental observations and explore the fundamental mechanisms that give rise to anomalous relaxation behaviours. Particular attention is given to the role of quantum fluctuations, integrability and symmetry in shaping equilibration pathways. In recent years, notable theoretical and experimental progress has been made in understanding both the classical and quantum versions of the Mpemba effect, in which a hotter system freezes faster than a cooler one. This Perspective discusses this phenomenon in open and isolated quantum systems.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 8","pages":"451-460"},"PeriodicalIF":39.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quantum Mpemba effects\",\"authors\":\"Filiberto Ares, Pasquale Calabrese, Sara Murciano\",\"doi\":\"10.1038/s42254-025-00838-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mpemba effect, in which a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics. In the past few years, notable theoretical and experimental progress has been made in understanding its occurrence in both classical and quantum systems. In this Perspective, we provide a concise overview of recent work and open questions on the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics, which give rise to distinct manifestations of this anomalous non-equilibrium phenomenon. We discuss key theoretical frameworks, highlight experimental observations and explore the fundamental mechanisms that give rise to anomalous relaxation behaviours. Particular attention is given to the role of quantum fluctuations, integrability and symmetry in shaping equilibration pathways. In recent years, notable theoretical and experimental progress has been made in understanding both the classical and quantum versions of the Mpemba effect, in which a hotter system freezes faster than a cooler one. This Perspective discusses this phenomenon in open and isolated quantum systems.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"7 8\",\"pages\":\"451-460\"},\"PeriodicalIF\":39.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-025-00838-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00838-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

姆潘巴效应(Mpemba effect)是指温度较高的系统比温度较低的系统更容易达到平衡,长期以来一直是经典物理学中令人着迷的课题。在过去的几年中,在理解它在经典和量子系统中的发生方面取得了显著的理论和实验进展。在这一观点中,我们提供了一个关于量子系统中Mpemba效应的最新工作和开放问题的简要概述,重点是开放和孤立动力学,它们引起了这种异常非平衡现象的不同表现。我们讨论了关键的理论框架,强调了实验观察,并探讨了引起异常弛豫行为的基本机制。特别注意量子涨落、可积性和对称性在形成平衡路径中的作用。近年来,在理解经典和量子版本的姆潘巴效应方面取得了显著的理论和实验进展。在姆潘巴效应中,温度较高的系统比温度较低的系统冻结得更快。本展望讨论了开放和孤立量子系统中的这一现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The quantum Mpemba effects

The quantum Mpemba effects
The Mpemba effect, in which a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics. In the past few years, notable theoretical and experimental progress has been made in understanding its occurrence in both classical and quantum systems. In this Perspective, we provide a concise overview of recent work and open questions on the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics, which give rise to distinct manifestations of this anomalous non-equilibrium phenomenon. We discuss key theoretical frameworks, highlight experimental observations and explore the fundamental mechanisms that give rise to anomalous relaxation behaviours. Particular attention is given to the role of quantum fluctuations, integrability and symmetry in shaping equilibration pathways. In recent years, notable theoretical and experimental progress has been made in understanding both the classical and quantum versions of the Mpemba effect, in which a hotter system freezes faster than a cooler one. This Perspective discusses this phenomenon in open and isolated quantum systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信