{"title":"散射介质中保持轨道角动量","authors":"Tatiana Novikova","doi":"10.1038/s42254-025-00864-y","DOIUrl":null,"url":null,"abstract":"In the 1990s, the realization that helical beams carry orbital angular momentum started the field of structured light. In 2024, experiments showed that these beams preserve their phase information when traversing a turbid medium, which promises new applications in biophotonics.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 9","pages":"470-472"},"PeriodicalIF":39.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preserving orbital angular momentum in scattering media\",\"authors\":\"Tatiana Novikova\",\"doi\":\"10.1038/s42254-025-00864-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 1990s, the realization that helical beams carry orbital angular momentum started the field of structured light. In 2024, experiments showed that these beams preserve their phase information when traversing a turbid medium, which promises new applications in biophotonics.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"7 9\",\"pages\":\"470-472\"},\"PeriodicalIF\":39.5000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-025-00864-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00864-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Preserving orbital angular momentum in scattering media
In the 1990s, the realization that helical beams carry orbital angular momentum started the field of structured light. In 2024, experiments showed that these beams preserve their phase information when traversing a turbid medium, which promises new applications in biophotonics.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.