Byoung Hee Moon, Ashok Mondal, Dmitry K. Efimkin, Young Hee Lee
{"title":"范德华层状材料中的激子凝聚","authors":"Byoung Hee Moon, Ashok Mondal, Dmitry K. Efimkin, Young Hee Lee","doi":"10.1038/s42254-025-00834-4","DOIUrl":null,"url":null,"abstract":"Van der Waals layered materials have emerged as a platform for exploring exciton condensation, a phenomenon that reflects quantum coherence and collective behaviour. Unlike traditional quantum Hall systems, 2D layered materials offer a unique opportunity to observe exciton condensation without external magnetic field and at relatively high temperatures, making them highly attractive for both fundamental studies and potential applications. This Perspective focuses on recent advances in understanding the electrical transport behaviours of exciton condensates in 2D layered materials and the strategies proposed to achieve high-temperature exciton condensation, while addressing the challenges and discussing potential future developments in this area. Excitonic condensation occurs when electrons and holes in closely placed bilayers form bound pairs and condense into a coherent quantum state. This Perspective highlights recent experimental breakthroughs and emerging directions in the rapidly evolving field of excitonic condensation in van der Waals bilayer systems.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"388-401"},"PeriodicalIF":39.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exciton condensate in van der Waals layered materials\",\"authors\":\"Byoung Hee Moon, Ashok Mondal, Dmitry K. Efimkin, Young Hee Lee\",\"doi\":\"10.1038/s42254-025-00834-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Van der Waals layered materials have emerged as a platform for exploring exciton condensation, a phenomenon that reflects quantum coherence and collective behaviour. Unlike traditional quantum Hall systems, 2D layered materials offer a unique opportunity to observe exciton condensation without external magnetic field and at relatively high temperatures, making them highly attractive for both fundamental studies and potential applications. This Perspective focuses on recent advances in understanding the electrical transport behaviours of exciton condensates in 2D layered materials and the strategies proposed to achieve high-temperature exciton condensation, while addressing the challenges and discussing potential future developments in this area. Excitonic condensation occurs when electrons and holes in closely placed bilayers form bound pairs and condense into a coherent quantum state. This Perspective highlights recent experimental breakthroughs and emerging directions in the rapidly evolving field of excitonic condensation in van der Waals bilayer systems.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"7 7\",\"pages\":\"388-401\"},\"PeriodicalIF\":39.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-025-00834-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00834-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Exciton condensate in van der Waals layered materials
Van der Waals layered materials have emerged as a platform for exploring exciton condensation, a phenomenon that reflects quantum coherence and collective behaviour. Unlike traditional quantum Hall systems, 2D layered materials offer a unique opportunity to observe exciton condensation without external magnetic field and at relatively high temperatures, making them highly attractive for both fundamental studies and potential applications. This Perspective focuses on recent advances in understanding the electrical transport behaviours of exciton condensates in 2D layered materials and the strategies proposed to achieve high-temperature exciton condensation, while addressing the challenges and discussing potential future developments in this area. Excitonic condensation occurs when electrons and holes in closely placed bilayers form bound pairs and condense into a coherent quantum state. This Perspective highlights recent experimental breakthroughs and emerging directions in the rapidly evolving field of excitonic condensation in van der Waals bilayer systems.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.