Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer
{"title":"通过催化甲醇分解和单体分离的混合聚酯闭环回收","authors":"Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer","doi":"10.1038/s44286-025-00275-x","DOIUrl":null,"url":null,"abstract":"A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"568-580"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations\",\"authors\":\"Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer\",\"doi\":\"10.1038/s44286-025-00275-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 9\",\"pages\":\"568-580\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-025-00275-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00275-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations
A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.