维度方法通过神经调节改善抗抑郁药结果的预测

IF 8.7
{"title":"维度方法通过神经调节改善抗抑郁药结果的预测","authors":"","doi":"10.1038/s44220-025-00490-8","DOIUrl":null,"url":null,"abstract":"Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive treatment for depression. However, few studies have explored whether pretreatment functional neuroimaging can be used to predict rTMS-induced changes in depressive symptoms. Using machine learning, we identified that changes in a distinct symptom cluster of core mood and anhedonia, could be predicted more accurately than overall symptom severity.","PeriodicalId":74247,"journal":{"name":"Nature mental health","volume":"3 9","pages":"972-973"},"PeriodicalIF":8.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensional approaches improve prediction of antidepressant outcomes via neuromodulation\",\"authors\":\"\",\"doi\":\"10.1038/s44220-025-00490-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive treatment for depression. However, few studies have explored whether pretreatment functional neuroimaging can be used to predict rTMS-induced changes in depressive symptoms. Using machine learning, we identified that changes in a distinct symptom cluster of core mood and anhedonia, could be predicted more accurately than overall symptom severity.\",\"PeriodicalId\":74247,\"journal\":{\"name\":\"Nature mental health\",\"volume\":\"3 9\",\"pages\":\"972-973\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature mental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44220-025-00490-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature mental health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44220-025-00490-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重复经颅磁刺激(rTMS)是一种无创治疗抑郁症的方法。然而,很少有研究探讨预处理功能神经影像学是否可以用于预测rtms诱导的抑郁症状的变化。使用机器学习,我们发现核心情绪和快感缺乏的不同症状群的变化可以比整体症状严重程度更准确地预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dimensional approaches improve prediction of antidepressant outcomes via neuromodulation

Dimensional approaches improve prediction of antidepressant outcomes via neuromodulation
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive treatment for depression. However, few studies have explored whether pretreatment functional neuroimaging can be used to predict rTMS-induced changes in depressive symptoms. Using machine learning, we identified that changes in a distinct symptom cluster of core mood and anhedonia, could be predicted more accurately than overall symptom severity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信