用于缺血再灌注治疗的水凝胶电化学电池中的氢演化和动力学

Wen Li, Jing Zhang, Romain Nith, Jiping Yue, Ananth Kamath, Chuanwang Yang, Chen Wei, Brennan Lee, Pengju Li, Hsiu-Ming Tsai, Tiantian Guo, Changxu Sun, Saehyun Kim, Lewis L. Shi, Pedro Lopes, Lihua Jin, Bozhi Tian
{"title":"用于缺血再灌注治疗的水凝胶电化学电池中的氢演化和动力学","authors":"Wen Li, Jing Zhang, Romain Nith, Jiping Yue, Ananth Kamath, Chuanwang Yang, Chen Wei, Brennan Lee, Pengju Li, Hsiu-Ming Tsai, Tiantian Guo, Changxu Sun, Saehyun Kim, Lewis L. Shi, Pedro Lopes, Lihua Jin, Bozhi Tian","doi":"10.1038/s44286-025-00259-x","DOIUrl":null,"url":null,"abstract":"Molecular hydrogen (H2) protects organs from reactive oxygen species damage associated with ischemia–reperfusion (I/R) injury. Existing H2 delivery methods, such as gas inhalation and H2-rich water consumption, target the entire body and experience leakage during administration. Here we engineer a portable hydrogel electrochemical cell that enables on-demand H2 production via the hydrogen evolution reaction. The system enables H2 controlled generation, localized storage and sustained diffusion to the tissue–device interface, with better controllability and sustainability. We conduct a thorough study of H2 evolution and dynamics in the hydrogel system, evaluating the influence of hydrogel polymer composition on the hydrogen evolution reaction kinetics, bubble morphologies and storage. We validate its protective effects (1) in vitro with cardiomyocytes and keratinocytes, (2) ex vivo in I/R hearts and (3) in vivo in skin I/R pressure ulcers. These findings demonstrate the potential of the hydrogel electrochemical cell design for efficient and sustainable H2 delivery in I/R therapy, which could be broadly applied in other gas-based therapies and drug delivery research. A wearable hydrogel-based electrochemical platform is presented for on-demand hydrogen gas therapy, enabling localized gas generation, storage and sustained delivery. This device offers a therapeutic modality for treating ischemia–reperfusion heart disease and skin bedsores, expanding bioelectronics applications in gas-phase chemical delivery.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 8","pages":"484-497"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen evolution and dynamics in hydrogel electrochemical cells for ischemia–reperfusion therapy\",\"authors\":\"Wen Li, Jing Zhang, Romain Nith, Jiping Yue, Ananth Kamath, Chuanwang Yang, Chen Wei, Brennan Lee, Pengju Li, Hsiu-Ming Tsai, Tiantian Guo, Changxu Sun, Saehyun Kim, Lewis L. Shi, Pedro Lopes, Lihua Jin, Bozhi Tian\",\"doi\":\"10.1038/s44286-025-00259-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular hydrogen (H2) protects organs from reactive oxygen species damage associated with ischemia–reperfusion (I/R) injury. Existing H2 delivery methods, such as gas inhalation and H2-rich water consumption, target the entire body and experience leakage during administration. Here we engineer a portable hydrogel electrochemical cell that enables on-demand H2 production via the hydrogen evolution reaction. The system enables H2 controlled generation, localized storage and sustained diffusion to the tissue–device interface, with better controllability and sustainability. We conduct a thorough study of H2 evolution and dynamics in the hydrogel system, evaluating the influence of hydrogel polymer composition on the hydrogen evolution reaction kinetics, bubble morphologies and storage. We validate its protective effects (1) in vitro with cardiomyocytes and keratinocytes, (2) ex vivo in I/R hearts and (3) in vivo in skin I/R pressure ulcers. These findings demonstrate the potential of the hydrogel electrochemical cell design for efficient and sustainable H2 delivery in I/R therapy, which could be broadly applied in other gas-based therapies and drug delivery research. A wearable hydrogel-based electrochemical platform is presented for on-demand hydrogen gas therapy, enabling localized gas generation, storage and sustained delivery. This device offers a therapeutic modality for treating ischemia–reperfusion heart disease and skin bedsores, expanding bioelectronics applications in gas-phase chemical delivery.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 8\",\"pages\":\"484-497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-025-00259-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00259-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子氢(H2)保护器官免受与缺血再灌注(I/R)损伤相关的活性氧损伤。现有的H2输送方式,如气体吸入和富H2水的消耗,是针对全身的,并且在给药过程中会出现泄漏。在这里,我们设计了一种便携式水凝胶电化学电池,可以通过析氢反应按需生产氢气。该系统可实现H2的可控生成、局部储存和持续扩散到组织-装置界面,具有更好的可控性和可持续性。我们深入研究了水凝胶体系中氢气的析出和动力学,评估了水凝胶聚合物组成对氢气析出反应动力学、气泡形态和储存的影响。我们验证了其保护作用(1)体外心肌细胞和角化细胞,(2)体外I/R心脏和(3)体内皮肤I/R压疮。这些发现证明了水凝胶电化学电池设计在I/R治疗中高效和可持续地传递H2的潜力,可以广泛应用于其他基于气体的治疗和药物传递研究。提出了一种可穿戴的基于水凝胶的电化学平台,用于按需氢气治疗,实现局部气体生成、储存和持续输送。该装置为治疗缺血-再灌注心脏病和皮肤褥疮提供了一种治疗方式,扩大了生物电子学在气相化学输送中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogen evolution and dynamics in hydrogel electrochemical cells for ischemia–reperfusion therapy

Hydrogen evolution and dynamics in hydrogel electrochemical cells for ischemia–reperfusion therapy
Molecular hydrogen (H2) protects organs from reactive oxygen species damage associated with ischemia–reperfusion (I/R) injury. Existing H2 delivery methods, such as gas inhalation and H2-rich water consumption, target the entire body and experience leakage during administration. Here we engineer a portable hydrogel electrochemical cell that enables on-demand H2 production via the hydrogen evolution reaction. The system enables H2 controlled generation, localized storage and sustained diffusion to the tissue–device interface, with better controllability and sustainability. We conduct a thorough study of H2 evolution and dynamics in the hydrogel system, evaluating the influence of hydrogel polymer composition on the hydrogen evolution reaction kinetics, bubble morphologies and storage. We validate its protective effects (1) in vitro with cardiomyocytes and keratinocytes, (2) ex vivo in I/R hearts and (3) in vivo in skin I/R pressure ulcers. These findings demonstrate the potential of the hydrogel electrochemical cell design for efficient and sustainable H2 delivery in I/R therapy, which could be broadly applied in other gas-based therapies and drug delivery research. A wearable hydrogel-based electrochemical platform is presented for on-demand hydrogen gas therapy, enabling localized gas generation, storage and sustained delivery. This device offers a therapeutic modality for treating ischemia–reperfusion heart disease and skin bedsores, expanding bioelectronics applications in gas-phase chemical delivery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信