脉冲驱动电催化与工程木电极,高效,节能和可持续的水处理

IF 24.1
Shuang Zhong, Hongyu Zhou, Shiying Ren, Kunsheng Hu, Wei Ren, Junwen Chen, Zhong-Shuai Zhu, Xiaoguang Duan, Shaobin Wang
{"title":"脉冲驱动电催化与工程木电极,高效,节能和可持续的水处理","authors":"Shuang Zhong, Hongyu Zhou, Shiying Ren, Kunsheng Hu, Wei Ren, Junwen Chen, Zhong-Shuai Zhu, Xiaoguang Duan, Shaobin Wang","doi":"10.1038/s44221-025-00466-z","DOIUrl":null,"url":null,"abstract":"Electro-Fenton technology holds great promise for wastewater treatment but is constrained by the high cost of electrodes, high-purity oxygen input, rapid catalyst loss and sludge generation. Here we present a low-cost and self-supporting wooden electrode with pulsed excitation of ambient air and Fe3+ reduction, overcoming all the above issues in electro-Fenton processes. The electrode was fabricated via controlled wood delignification and carbonization, transforming into a self-supporting porous and functionalized architecture for efficient oxygen capture from air and two-electron reduction to H2O2. Periodic positive voltage pulses restored iron species from the electrode for in situ generation of radicals, minimizing surface iron accumulation and securing periodical electrode refreshing. A scaled-up system maintains a long-term operation in 30 days for bisphenol A removal without a performance loss at a low energy consumption of 0.013 kWh per gram of bisphenol A. This wooden-pulsed electro-Fenton system provides a low-cost and sustainable solution to practical wastewater treatment. The pulsed electrochemical method, combined with a wood-based electrode, enables the simultaneous reduction of oxygen to generate hydrogen peroxide and the regeneration of Fe3+ to active Fe2+ for radical production. This approach offers a cost-effective and sustainable electro-Fenton process for wastewater treatment.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 8","pages":"890-901"},"PeriodicalIF":24.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulse-driven electrocatalysis with engineered wooden electrode for high-efficiency, energy-saving and sustainable water treatment\",\"authors\":\"Shuang Zhong, Hongyu Zhou, Shiying Ren, Kunsheng Hu, Wei Ren, Junwen Chen, Zhong-Shuai Zhu, Xiaoguang Duan, Shaobin Wang\",\"doi\":\"10.1038/s44221-025-00466-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-Fenton technology holds great promise for wastewater treatment but is constrained by the high cost of electrodes, high-purity oxygen input, rapid catalyst loss and sludge generation. Here we present a low-cost and self-supporting wooden electrode with pulsed excitation of ambient air and Fe3+ reduction, overcoming all the above issues in electro-Fenton processes. The electrode was fabricated via controlled wood delignification and carbonization, transforming into a self-supporting porous and functionalized architecture for efficient oxygen capture from air and two-electron reduction to H2O2. Periodic positive voltage pulses restored iron species from the electrode for in situ generation of radicals, minimizing surface iron accumulation and securing periodical electrode refreshing. A scaled-up system maintains a long-term operation in 30 days for bisphenol A removal without a performance loss at a low energy consumption of 0.013 kWh per gram of bisphenol A. This wooden-pulsed electro-Fenton system provides a low-cost and sustainable solution to practical wastewater treatment. The pulsed electrochemical method, combined with a wood-based electrode, enables the simultaneous reduction of oxygen to generate hydrogen peroxide and the regeneration of Fe3+ to active Fe2+ for radical production. This approach offers a cost-effective and sustainable electro-Fenton process for wastewater treatment.\",\"PeriodicalId\":74252,\"journal\":{\"name\":\"Nature water\",\"volume\":\"3 8\",\"pages\":\"890-901\"},\"PeriodicalIF\":24.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44221-025-00466-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-025-00466-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电fenton技术在污水处理方面具有很大的前景,但受到电极成本高、高纯度氧气输入、催化剂快速损失和污泥产生的限制。本文提出了一种低成本、自支撑的环境空气脉冲激励和Fe3+还原木电极,克服了电fenton工艺中存在的上述问题。该电极通过控制木材脱木质素和碳化制备,转化为自支撑多孔和功能化结构,用于从空气中高效捕获氧气和双电子还原为H2O2。周期性的正电压脉冲从电极上恢复铁的种类,以原位生成自由基,最大限度地减少表面铁的积累,并确保周期性的电极刷新。放大后的系统可以在30天内长期运行,去除双酚A而不损失性能,每克双酚A的能耗仅为0.013千瓦时。木脉冲电fenton系统为实际废水处理提供了低成本和可持续的解决方案。脉冲电化学方法与木质电极相结合,可以同时还原氧气生成过氧化氢,并将Fe3+再生为活性Fe2+,从而产生自由基。这种方法为废水处理提供了一种具有成本效益和可持续性的电fenton工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pulse-driven electrocatalysis with engineered wooden electrode for high-efficiency, energy-saving and sustainable water treatment

Pulse-driven electrocatalysis with engineered wooden electrode for high-efficiency, energy-saving and sustainable water treatment
Electro-Fenton technology holds great promise for wastewater treatment but is constrained by the high cost of electrodes, high-purity oxygen input, rapid catalyst loss and sludge generation. Here we present a low-cost and self-supporting wooden electrode with pulsed excitation of ambient air and Fe3+ reduction, overcoming all the above issues in electro-Fenton processes. The electrode was fabricated via controlled wood delignification and carbonization, transforming into a self-supporting porous and functionalized architecture for efficient oxygen capture from air and two-electron reduction to H2O2. Periodic positive voltage pulses restored iron species from the electrode for in situ generation of radicals, minimizing surface iron accumulation and securing periodical electrode refreshing. A scaled-up system maintains a long-term operation in 30 days for bisphenol A removal without a performance loss at a low energy consumption of 0.013 kWh per gram of bisphenol A. This wooden-pulsed electro-Fenton system provides a low-cost and sustainable solution to practical wastewater treatment. The pulsed electrochemical method, combined with a wood-based electrode, enables the simultaneous reduction of oxygen to generate hydrogen peroxide and the regeneration of Fe3+ to active Fe2+ for radical production. This approach offers a cost-effective and sustainable electro-Fenton process for wastewater treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信