Fernando Delgado-Licona, Daniel Addington, Abdulrahman Alsaiari, Milad Abolhasani
{"title":"自动驾驶实验室的工程原理","authors":"Fernando Delgado-Licona, Daniel Addington, Abdulrahman Alsaiari, Milad Abolhasani","doi":"10.1038/s44286-025-00217-7","DOIUrl":null,"url":null,"abstract":"The chemical engineering field stands at a pivotal moment of transformation, driven in part by the convergence of process automation, robotics and artificial intelligence into self-driving laboratories (SDLs) to accelerate scientific discoveries. This Comment explores how process intensification principles can guide the development of SDLs to accelerate innovation while ensuring efficient use of resources across the multiscale chemical domain.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 5","pages":"277-280"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering principles for self-driving laboratories\",\"authors\":\"Fernando Delgado-Licona, Daniel Addington, Abdulrahman Alsaiari, Milad Abolhasani\",\"doi\":\"10.1038/s44286-025-00217-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chemical engineering field stands at a pivotal moment of transformation, driven in part by the convergence of process automation, robotics and artificial intelligence into self-driving laboratories (SDLs) to accelerate scientific discoveries. This Comment explores how process intensification principles can guide the development of SDLs to accelerate innovation while ensuring efficient use of resources across the multiscale chemical domain.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 5\",\"pages\":\"277-280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-025-00217-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00217-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Engineering principles for self-driving laboratories
The chemical engineering field stands at a pivotal moment of transformation, driven in part by the convergence of process automation, robotics and artificial intelligence into self-driving laboratories (SDLs) to accelerate scientific discoveries. This Comment explores how process intensification principles can guide the development of SDLs to accelerate innovation while ensuring efficient use of resources across the multiscale chemical domain.