{"title":"自驾车纳米粒子合成","authors":"Tong Zhao, Yan Zeng","doi":"10.1038/s44286-025-00225-7","DOIUrl":null,"url":null,"abstract":"The multidimensional chemical parameter space for nanoparticle synthesis is too extensive for traditional exploration, but integrating robotic automation, microfluidics and machine learning can accelerate discovery and improve synthesis controllability.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 5","pages":"290-291"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-driving nanoparticle synthesis\",\"authors\":\"Tong Zhao, Yan Zeng\",\"doi\":\"10.1038/s44286-025-00225-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multidimensional chemical parameter space for nanoparticle synthesis is too extensive for traditional exploration, but integrating robotic automation, microfluidics and machine learning can accelerate discovery and improve synthesis controllability.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 5\",\"pages\":\"290-291\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-025-00225-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00225-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The multidimensional chemical parameter space for nanoparticle synthesis is too extensive for traditional exploration, but integrating robotic automation, microfluidics and machine learning can accelerate discovery and improve synthesis controllability.