{"title":"单步制备水稳定纳米晶体","authors":"","doi":"10.1038/s44160-025-00768-w","DOIUrl":null,"url":null,"abstract":"Nanocrystals are increasingly used in high-tech applications and consumer products, but water-stable variants for life science and healthcare applications have production bottlenecks owing to complex syntheses. Now, water-stable nanocrystals are made in a single step by replacing ‘oily’ reagents with oxygen-rich alkoxy ligands and solvents, endowing the nanocrystals with broad solvent dispersibility.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 7","pages":"785-786"},"PeriodicalIF":20.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-stable nanocrystals in a single step\",\"authors\":\"\",\"doi\":\"10.1038/s44160-025-00768-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocrystals are increasingly used in high-tech applications and consumer products, but water-stable variants for life science and healthcare applications have production bottlenecks owing to complex syntheses. Now, water-stable nanocrystals are made in a single step by replacing ‘oily’ reagents with oxygen-rich alkoxy ligands and solvents, endowing the nanocrystals with broad solvent dispersibility.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":\"4 7\",\"pages\":\"785-786\"},\"PeriodicalIF\":20.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-025-00768-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-025-00768-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanocrystals are increasingly used in high-tech applications and consumer products, but water-stable variants for life science and healthcare applications have production bottlenecks owing to complex syntheses. Now, water-stable nanocrystals are made in a single step by replacing ‘oily’ reagents with oxygen-rich alkoxy ligands and solvents, endowing the nanocrystals with broad solvent dispersibility.