流驱动的数据强化,加速自主无机材料的发现

Fernando Delgado-Licona, Abdulrahman Alsaiari, Hannah Dickerson, Philip Klem, Arup Ghorai, Richard B. Canty, Jeffrey A. Bennett, Pragyan Jha, Nikolai Mukhin, Junbin Li, Enrique A. López-Guajardo, Sina Sadeghi, Fazel Bateni, Milad Abolhasani
{"title":"流驱动的数据强化,加速自主无机材料的发现","authors":"Fernando Delgado-Licona, Abdulrahman Alsaiari, Hannah Dickerson, Philip Klem, Arup Ghorai, Richard B. Canty, Jeffrey A. Bennett, Pragyan Jha, Nikolai Mukhin, Junbin Li, Enrique A. López-Guajardo, Sina Sadeghi, Fazel Bateni, Milad Abolhasani","doi":"10.1038/s44286-025-00249-z","DOIUrl":null,"url":null,"abstract":"The rapid discovery of advanced functional materials is critical for overcoming pressing global challenges in energy and sustainability. Despite recent progress in self-driving laboratories and materials acceleration platforms, their capacity to explore complex parameter spaces is hampered by low data throughput. Here we introduce dynamic flow experiments as a data intensification strategy for inorganic materials syntheses within self-driving fluidic laboratories by the continuous mapping of transient reaction conditions to steady-state equivalents. Applied to CdSe colloidal quantum dots, as a testbed, dynamic flow experiments yield at least an order-of-magnitude improvement in data acquisition efficiency and reducing both time and chemical consumption compared to state-of-the-art self-driving fluidic laboratories. By integrating real-time, in situ characterization with microfluidic principles and autonomous experimentation, a dynamic flow experiment fundamentally redefines data utilization in self-driving fluidic laboratories, accelerating the discovery and optimization of emerging materials and creating a sustainable foundation for future autonomous materials research. This study embeds dynamic flow experiments into self-driving laboratories, intensifying data acquisition during autonomous materials synthesis. Demonstrated with colloidal quantum dots, the developed method substantially boosts sampling density over tenfold and reduces time and reagents.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 7","pages":"436-446"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-driven data intensification to accelerate autonomous inorganic materials discovery\",\"authors\":\"Fernando Delgado-Licona, Abdulrahman Alsaiari, Hannah Dickerson, Philip Klem, Arup Ghorai, Richard B. Canty, Jeffrey A. Bennett, Pragyan Jha, Nikolai Mukhin, Junbin Li, Enrique A. López-Guajardo, Sina Sadeghi, Fazel Bateni, Milad Abolhasani\",\"doi\":\"10.1038/s44286-025-00249-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid discovery of advanced functional materials is critical for overcoming pressing global challenges in energy and sustainability. Despite recent progress in self-driving laboratories and materials acceleration platforms, their capacity to explore complex parameter spaces is hampered by low data throughput. Here we introduce dynamic flow experiments as a data intensification strategy for inorganic materials syntheses within self-driving fluidic laboratories by the continuous mapping of transient reaction conditions to steady-state equivalents. Applied to CdSe colloidal quantum dots, as a testbed, dynamic flow experiments yield at least an order-of-magnitude improvement in data acquisition efficiency and reducing both time and chemical consumption compared to state-of-the-art self-driving fluidic laboratories. By integrating real-time, in situ characterization with microfluidic principles and autonomous experimentation, a dynamic flow experiment fundamentally redefines data utilization in self-driving fluidic laboratories, accelerating the discovery and optimization of emerging materials and creating a sustainable foundation for future autonomous materials research. This study embeds dynamic flow experiments into self-driving laboratories, intensifying data acquisition during autonomous materials synthesis. Demonstrated with colloidal quantum dots, the developed method substantially boosts sampling density over tenfold and reduces time and reagents.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 7\",\"pages\":\"436-446\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-025-00249-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00249-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先进功能材料的快速发现对于克服能源和可持续性方面紧迫的全球挑战至关重要。尽管最近在自动驾驶实验室和材料加速平台方面取得了进展,但它们探索复杂参数空间的能力受到低数据吞吐量的阻碍。本文介绍了动态流动实验作为一种数据强化策略,通过将瞬态反应条件连续映射到稳态当量,在自驾车流体实验室中合成无机材料。应用于CdSe胶体量子点作为测试平台,与最先进的自动驾驶流体实验室相比,动态流动实验在数据采集效率和减少时间和化学消耗方面至少提高了一个数量级。通过将实时、原位表征与微流体原理和自主实验相结合,动态流动实验从根本上重新定义了自动流体实验室的数据利用,加速了新兴材料的发现和优化,为未来的自主材料研究奠定了可持续的基础。本研究将动态流动实验嵌入到自动驾驶实验室中,加强了自动材料合成过程中的数据采集。胶体量子点证明,开发的方法大大提高了十倍以上的采样密度,减少了时间和试剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flow-driven data intensification to accelerate autonomous inorganic materials discovery

Flow-driven data intensification to accelerate autonomous inorganic materials discovery
The rapid discovery of advanced functional materials is critical for overcoming pressing global challenges in energy and sustainability. Despite recent progress in self-driving laboratories and materials acceleration platforms, their capacity to explore complex parameter spaces is hampered by low data throughput. Here we introduce dynamic flow experiments as a data intensification strategy for inorganic materials syntheses within self-driving fluidic laboratories by the continuous mapping of transient reaction conditions to steady-state equivalents. Applied to CdSe colloidal quantum dots, as a testbed, dynamic flow experiments yield at least an order-of-magnitude improvement in data acquisition efficiency and reducing both time and chemical consumption compared to state-of-the-art self-driving fluidic laboratories. By integrating real-time, in situ characterization with microfluidic principles and autonomous experimentation, a dynamic flow experiment fundamentally redefines data utilization in self-driving fluidic laboratories, accelerating the discovery and optimization of emerging materials and creating a sustainable foundation for future autonomous materials research. This study embeds dynamic flow experiments into self-driving laboratories, intensifying data acquisition during autonomous materials synthesis. Demonstrated with colloidal quantum dots, the developed method substantially boosts sampling density over tenfold and reduces time and reagents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信