Guodong Nian, Zheqi Chen, Xianyang Bao, Matthew Wei Ming Tan, Yakov Kutsovsky, Zhigang Suo
{"title":"天然橡胶,抗裂纹扩展能力强","authors":"Guodong Nian, Zheqi Chen, Xianyang Bao, Matthew Wei Ming Tan, Yakov Kutsovsky, Zhigang Suo","doi":"10.1038/s41893-025-01559-z","DOIUrl":null,"url":null,"abstract":"Natural rubber, with annual production of 15 million tonnes, is the most used bio-elastomer. Improving its resistance to crack growth is highly desired, to prolong its service life for many applications and eventually improve its sustainability. Here we markedly amplify the resistance to crack growth in natural rubber by forming a tanglemer, a polymer network in which entanglements greatly outnumber crosslinks. Specifically, we cast natural rubber latex without high-intensity processing that cuts long polymers. The long polymers densely entangle by thermal motion and are then sparsely crosslinked. At a crack tip, long polymer strands between neighbouring crosslinks deconcentrate stress, extend strain-induced crystallization over a large region and enhance crystallinity. For example, when the ratio of crosslinks to repeat units reduces from 10−2 to 10−3, the network amplifies fatigue threshold from ~50 J m−2 to ~200 J m−2, and toughness from ~104 J m−2 to over 105 J m−2. Overall, this work provides a viable strategy to improve the practical applicability of natural rubber, contributing to the development of sustainable polymers. Natural rubber is a widely used biopolymer and further improving its resistance to crack growth will extend its service life. Here the authors show a strategy to amplify the resistance to crack growth in natural rubber by forming a tanglemer.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 6","pages":"692-701"},"PeriodicalIF":27.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural rubber with high resistance to crack growth\",\"authors\":\"Guodong Nian, Zheqi Chen, Xianyang Bao, Matthew Wei Ming Tan, Yakov Kutsovsky, Zhigang Suo\",\"doi\":\"10.1038/s41893-025-01559-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural rubber, with annual production of 15 million tonnes, is the most used bio-elastomer. Improving its resistance to crack growth is highly desired, to prolong its service life for many applications and eventually improve its sustainability. Here we markedly amplify the resistance to crack growth in natural rubber by forming a tanglemer, a polymer network in which entanglements greatly outnumber crosslinks. Specifically, we cast natural rubber latex without high-intensity processing that cuts long polymers. The long polymers densely entangle by thermal motion and are then sparsely crosslinked. At a crack tip, long polymer strands between neighbouring crosslinks deconcentrate stress, extend strain-induced crystallization over a large region and enhance crystallinity. For example, when the ratio of crosslinks to repeat units reduces from 10−2 to 10−3, the network amplifies fatigue threshold from ~50 J m−2 to ~200 J m−2, and toughness from ~104 J m−2 to over 105 J m−2. Overall, this work provides a viable strategy to improve the practical applicability of natural rubber, contributing to the development of sustainable polymers. Natural rubber is a widely used biopolymer and further improving its resistance to crack growth will extend its service life. Here the authors show a strategy to amplify the resistance to crack growth in natural rubber by forming a tanglemer.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"8 6\",\"pages\":\"692-701\"},\"PeriodicalIF\":27.1000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-025-01559-z\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-025-01559-z","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Natural rubber with high resistance to crack growth
Natural rubber, with annual production of 15 million tonnes, is the most used bio-elastomer. Improving its resistance to crack growth is highly desired, to prolong its service life for many applications and eventually improve its sustainability. Here we markedly amplify the resistance to crack growth in natural rubber by forming a tanglemer, a polymer network in which entanglements greatly outnumber crosslinks. Specifically, we cast natural rubber latex without high-intensity processing that cuts long polymers. The long polymers densely entangle by thermal motion and are then sparsely crosslinked. At a crack tip, long polymer strands between neighbouring crosslinks deconcentrate stress, extend strain-induced crystallization over a large region and enhance crystallinity. For example, when the ratio of crosslinks to repeat units reduces from 10−2 to 10−3, the network amplifies fatigue threshold from ~50 J m−2 to ~200 J m−2, and toughness from ~104 J m−2 to over 105 J m−2. Overall, this work provides a viable strategy to improve the practical applicability of natural rubber, contributing to the development of sustainable polymers. Natural rubber is a widely used biopolymer and further improving its resistance to crack growth will extend its service life. Here the authors show a strategy to amplify the resistance to crack growth in natural rubber by forming a tanglemer.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.