Yu Tung Lo, Lei Jiang, Jordan L. W. Lam, Ben Woodington, Elise P. W. Jenkins, Vasileios Christopoulos, Darrin J. Lee, Yuxin Liu, Charles Y. Liu
{"title":"脑机接口研究中的动物模型","authors":"Yu Tung Lo, Lei Jiang, Jordan L. W. Lam, Ben Woodington, Elise P. W. Jenkins, Vasileios Christopoulos, Darrin J. Lee, Yuxin Liu, Charles Y. Liu","doi":"10.1038/s44222-025-00313-6","DOIUrl":null,"url":null,"abstract":"The development of chronic implantable brain–computer interface devices requires extensive preclinical testing, for which various animal models can be used. However, bridging the translational gap requires strategic consideration of their brains’ physiological, anatomical and functional organization differences.","PeriodicalId":74248,"journal":{"name":"Nature reviews bioengineering","volume":"3 8","pages":"623-625"},"PeriodicalIF":37.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Animal models in brain–computer interface research\",\"authors\":\"Yu Tung Lo, Lei Jiang, Jordan L. W. Lam, Ben Woodington, Elise P. W. Jenkins, Vasileios Christopoulos, Darrin J. Lee, Yuxin Liu, Charles Y. Liu\",\"doi\":\"10.1038/s44222-025-00313-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of chronic implantable brain–computer interface devices requires extensive preclinical testing, for which various animal models can be used. However, bridging the translational gap requires strategic consideration of their brains’ physiological, anatomical and functional organization differences.\",\"PeriodicalId\":74248,\"journal\":{\"name\":\"Nature reviews bioengineering\",\"volume\":\"3 8\",\"pages\":\"623-625\"},\"PeriodicalIF\":37.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature reviews bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44222-025-00313-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44222-025-00313-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Animal models in brain–computer interface research
The development of chronic implantable brain–computer interface devices requires extensive preclinical testing, for which various animal models can be used. However, bridging the translational gap requires strategic consideration of their brains’ physiological, anatomical and functional organization differences.