有限快照下基于协方差矩阵重构的深度学习到达方向估计

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yonghong Zhao, Jisong Liu, Xiumei Fan, Hongbo Cao
{"title":"有限快照下基于协方差矩阵重构的深度学习到达方向估计","authors":"Yonghong Zhao,&nbsp;Jisong Liu,&nbsp;Xiumei Fan,&nbsp;Hongbo Cao","doi":"10.1049/ell2.70373","DOIUrl":null,"url":null,"abstract":"<p>Under low-snapshot conditions, traditional direction-of-arrival (DOA) estimation suffers from covariance instability, while existing deep learning methods rely on complex architectures. This letter proposes a hybrid approach that combines model-driven and data-driven theories to strike a balance between estimation performance and computational cost. We reconstruct a structured covariance matrix by applying adaptive diagonal loading. The reconstructed matrix is then transformed into a two-channel input and fed into the proposed squeeze-and-excitation multi-scale deep convolutional network (SE-MSDCN). DOA estimates are obtained via a sub-grid peak interpolation strategy. The experimental results and our analysis validate the efficiency and superiority of the proposed method.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70373","citationCount":"0","resultStr":"{\"title\":\"Direction-of-Arrival Estimation Using Deep Learning With Covariance Matrix Reconstruction Under Limited Snapshots\",\"authors\":\"Yonghong Zhao,&nbsp;Jisong Liu,&nbsp;Xiumei Fan,&nbsp;Hongbo Cao\",\"doi\":\"10.1049/ell2.70373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Under low-snapshot conditions, traditional direction-of-arrival (DOA) estimation suffers from covariance instability, while existing deep learning methods rely on complex architectures. This letter proposes a hybrid approach that combines model-driven and data-driven theories to strike a balance between estimation performance and computational cost. We reconstruct a structured covariance matrix by applying adaptive diagonal loading. The reconstructed matrix is then transformed into a two-channel input and fed into the proposed squeeze-and-excitation multi-scale deep convolutional network (SE-MSDCN). DOA estimates are obtained via a sub-grid peak interpolation strategy. The experimental results and our analysis validate the efficiency and superiority of the proposed method.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70373\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ell2.70373\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ell2.70373","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在低快照条件下,传统的DOA估计存在协方差不稳定性,而现有的深度学习方法依赖于复杂的体系结构。这封信提出了一种混合方法,结合了模型驱动和数据驱动的理论,以在估计性能和计算成本之间取得平衡。采用自适应对角加载的方法重构了一个结构化协方差矩阵。然后将重构矩阵转换为双通道输入,并将其输入到所提出的压缩激励多尺度深度卷积网络(SE-MSDCN)中。通过子网格峰值插值策略获得DOA估计。实验结果和分析验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Direction-of-Arrival Estimation Using Deep Learning With Covariance Matrix Reconstruction Under Limited Snapshots

Direction-of-Arrival Estimation Using Deep Learning With Covariance Matrix Reconstruction Under Limited Snapshots

Direction-of-Arrival Estimation Using Deep Learning With Covariance Matrix Reconstruction Under Limited Snapshots

Direction-of-Arrival Estimation Using Deep Learning With Covariance Matrix Reconstruction Under Limited Snapshots

Under low-snapshot conditions, traditional direction-of-arrival (DOA) estimation suffers from covariance instability, while existing deep learning methods rely on complex architectures. This letter proposes a hybrid approach that combines model-driven and data-driven theories to strike a balance between estimation performance and computational cost. We reconstruct a structured covariance matrix by applying adaptive diagonal loading. The reconstructed matrix is then transformed into a two-channel input and fed into the proposed squeeze-and-excitation multi-scale deep convolutional network (SE-MSDCN). DOA estimates are obtained via a sub-grid peak interpolation strategy. The experimental results and our analysis validate the efficiency and superiority of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信