慢-快哈密顿系统动力学:鞍-焦点情况

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Sergey V. Bolotin
{"title":"慢-快哈密顿系统动力学:鞍-焦点情况","authors":"Sergey V. Bolotin","doi":"10.1134/S1560354724590039","DOIUrl":null,"url":null,"abstract":"<div><p>We study the dynamics of a multidimensional slow-fast Hamiltonian system in a neighborhood\nof the slow manifold under the assumption that the frozen system has a hyperbolic equilibrium\nwith complex simple leading eigenvalues\nand there exists a transverse homoclinic orbit.\nWe obtain formulas for the corresponding Shilnikov separatrix map\nand prove the existence of trajectories in a neighborhood of the homoclinic set\nwith a prescribed evolution of the slow variables.\nAn application to the <span>\\(3\\)</span> body problem is given.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 1","pages":"76 - 92"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Slow-Fast Hamiltonian Systems: The Saddle–Focus Case\",\"authors\":\"Sergey V. Bolotin\",\"doi\":\"10.1134/S1560354724590039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the dynamics of a multidimensional slow-fast Hamiltonian system in a neighborhood\\nof the slow manifold under the assumption that the frozen system has a hyperbolic equilibrium\\nwith complex simple leading eigenvalues\\nand there exists a transverse homoclinic orbit.\\nWe obtain formulas for the corresponding Shilnikov separatrix map\\nand prove the existence of trajectories in a neighborhood of the homoclinic set\\nwith a prescribed evolution of the slow variables.\\nAn application to the <span>\\\\(3\\\\)</span> body problem is given.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"30 1\",\"pages\":\"76 - 92\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354724590039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724590039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在慢流形的邻域中一个多维慢-快哈密顿系统的动力学问题,假设冻结系统具有一个双曲平衡,具有复简单的前导特征值,并且存在一个横向同斜轨道。我们得到了相应的Shilnikov分离矩阵映射的公式,并证明了具有给定慢变量演化的同斜集邻域中轨迹的存在性。给出了\(3\)体问题的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of Slow-Fast Hamiltonian Systems: The Saddle–Focus Case

We study the dynamics of a multidimensional slow-fast Hamiltonian system in a neighborhood of the slow manifold under the assumption that the frozen system has a hyperbolic equilibrium with complex simple leading eigenvalues and there exists a transverse homoclinic orbit. We obtain formulas for the corresponding Shilnikov separatrix map and prove the existence of trajectories in a neighborhood of the homoclinic set with a prescribed evolution of the slow variables. An application to the \(3\) body problem is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信