关于不同维数膨胀吸引子的存在性

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Vladislav S. Medvedev, Evgeny V. Zhuzhoma
{"title":"关于不同维数膨胀吸引子的存在性","authors":"Vladislav S. Medvedev,&nbsp;Evgeny V. Zhuzhoma","doi":"10.1134/S1560354724580020","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that an <span>\\(n\\)</span>-sphere <span>\\(\\mathbb{S}^{n}\\)</span>, <span>\\(n\\geqslant 2\\)</span>, admits structurally stable diffeomorphisms <span>\\(\\mathbb{S}^{n}\\to\\mathbb{S}^{n}\\)</span> with nonorientable expanding attractors of any topological dimension <span>\\(d\\in\\{1,\\ldots,[\\frac{n}{2}]\\}\\)</span> where <span>\\([x]\\)</span> is the integer part of <span>\\(x\\)</span>. In addition, any <span>\\(n\\)</span>-sphere <span>\\(\\mathbb{S}^{n}\\)</span>, <span>\\(n\\geqslant 3\\)</span>, admits axiom A diffeomorphisms <span>\\(\\mathbb{S}^{n}\\to\\mathbb{S}^{n}\\)</span> with orientable expanding attractors of any topological dimension <span>\\(d\\in\\{1,\\ldots,[\\frac{n}{3}]\\}\\)</span>. We prove that an <span>\\(n\\)</span>-torus <span>\\(\\mathbb{T}^{n}\\)</span>, <span>\\(n\\geqslant 2\\)</span>, admits structurally stable diffeomorphisms <span>\\(\\mathbb{T}^{n}\\to\\mathbb{T}^{n}\\)</span> with orientable expanding attractors of any topological dimension <span>\\(d\\in\\{1,\\ldots,n-1\\}\\)</span>. We also prove that, given any closed <span>\\(n\\)</span>-manifold <span>\\(M^{n}\\)</span>, <span>\\(n\\geqslant 2\\)</span>, and any <span>\\(d\\in\\{1,\\ldots,[\\frac{n}{2}]\\}\\)</span>, there is an axiom A diffeomorphism <span>\\(f:M^{n}\\to M^{n}\\)</span> with a <span>\\(d\\)</span>-dimensional nonorientable expanding attractor. Similar statements hold for axiom A flows.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 1","pages":"93 - 102"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Existence of Expanding Attractors with Different Dimensions\",\"authors\":\"Vladislav S. Medvedev,&nbsp;Evgeny V. Zhuzhoma\",\"doi\":\"10.1134/S1560354724580020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that an <span>\\\\(n\\\\)</span>-sphere <span>\\\\(\\\\mathbb{S}^{n}\\\\)</span>, <span>\\\\(n\\\\geqslant 2\\\\)</span>, admits structurally stable diffeomorphisms <span>\\\\(\\\\mathbb{S}^{n}\\\\to\\\\mathbb{S}^{n}\\\\)</span> with nonorientable expanding attractors of any topological dimension <span>\\\\(d\\\\in\\\\{1,\\\\ldots,[\\\\frac{n}{2}]\\\\}\\\\)</span> where <span>\\\\([x]\\\\)</span> is the integer part of <span>\\\\(x\\\\)</span>. In addition, any <span>\\\\(n\\\\)</span>-sphere <span>\\\\(\\\\mathbb{S}^{n}\\\\)</span>, <span>\\\\(n\\\\geqslant 3\\\\)</span>, admits axiom A diffeomorphisms <span>\\\\(\\\\mathbb{S}^{n}\\\\to\\\\mathbb{S}^{n}\\\\)</span> with orientable expanding attractors of any topological dimension <span>\\\\(d\\\\in\\\\{1,\\\\ldots,[\\\\frac{n}{3}]\\\\}\\\\)</span>. We prove that an <span>\\\\(n\\\\)</span>-torus <span>\\\\(\\\\mathbb{T}^{n}\\\\)</span>, <span>\\\\(n\\\\geqslant 2\\\\)</span>, admits structurally stable diffeomorphisms <span>\\\\(\\\\mathbb{T}^{n}\\\\to\\\\mathbb{T}^{n}\\\\)</span> with orientable expanding attractors of any topological dimension <span>\\\\(d\\\\in\\\\{1,\\\\ldots,n-1\\\\}\\\\)</span>. We also prove that, given any closed <span>\\\\(n\\\\)</span>-manifold <span>\\\\(M^{n}\\\\)</span>, <span>\\\\(n\\\\geqslant 2\\\\)</span>, and any <span>\\\\(d\\\\in\\\\{1,\\\\ldots,[\\\\frac{n}{2}]\\\\}\\\\)</span>, there is an axiom A diffeomorphism <span>\\\\(f:M^{n}\\\\to M^{n}\\\\)</span> with a <span>\\\\(d\\\\)</span>-dimensional nonorientable expanding attractor. Similar statements hold for axiom A flows.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"30 1\",\"pages\":\"93 - 102\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354724580020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724580020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了 \(n\)-球 \(\mathbb{S}^{n}\), \(n\geqslant 2\),允许结构稳定的微分同态 \(\mathbb{S}^{n}\to\mathbb{S}^{n}\) 具有任意拓扑维的不可定向扩展吸引子 \(d\in\{1,\ldots,[\frac{n}{2}]\}\) 在哪里 \([x]\) 整数部分是 \(x\). 此外,任何 \(n\)-球 \(\mathbb{S}^{n}\), \(n\geqslant 3\),承认公理A的微分同态 \(\mathbb{S}^{n}\to\mathbb{S}^{n}\) 具有任意拓扑维的可定向展开吸引子 \(d\in\{1,\ldots,[\frac{n}{3}]\}\). 我们证明了 \(n\)-环面 \(\mathbb{T}^{n}\), \(n\geqslant 2\),允许结构稳定的微分同态 \(\mathbb{T}^{n}\to\mathbb{T}^{n}\) 具有任意拓扑维的可定向展开吸引子 \(d\in\{1,\ldots,n-1\}\). 我们也证明了,给定任何闭合 \(n\)-歧管 \(M^{n}\), \(n\geqslant 2\),以及任何 \(d\in\{1,\ldots,[\frac{n}{2}]\}\),有一个公理A微分同构 \(f:M^{n}\to M^{n}\) 带着一个 \(d\)-维不可定向膨胀吸引子。类似的陈述也适用于公理A流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Existence of Expanding Attractors with Different Dimensions

We prove that an \(n\)-sphere \(\mathbb{S}^{n}\), \(n\geqslant 2\), admits structurally stable diffeomorphisms \(\mathbb{S}^{n}\to\mathbb{S}^{n}\) with nonorientable expanding attractors of any topological dimension \(d\in\{1,\ldots,[\frac{n}{2}]\}\) where \([x]\) is the integer part of \(x\). In addition, any \(n\)-sphere \(\mathbb{S}^{n}\), \(n\geqslant 3\), admits axiom A diffeomorphisms \(\mathbb{S}^{n}\to\mathbb{S}^{n}\) with orientable expanding attractors of any topological dimension \(d\in\{1,\ldots,[\frac{n}{3}]\}\). We prove that an \(n\)-torus \(\mathbb{T}^{n}\), \(n\geqslant 2\), admits structurally stable diffeomorphisms \(\mathbb{T}^{n}\to\mathbb{T}^{n}\) with orientable expanding attractors of any topological dimension \(d\in\{1,\ldots,n-1\}\). We also prove that, given any closed \(n\)-manifold \(M^{n}\), \(n\geqslant 2\), and any \(d\in\{1,\ldots,[\frac{n}{2}]\}\), there is an axiom A diffeomorphism \(f:M^{n}\to M^{n}\) with a \(d\)-dimensional nonorientable expanding attractor. Similar statements hold for axiom A flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信