Pierre Machut, Anna Karina Antonini, Céline Rivaux, Marina Gromova, Harinderbir Kaur, Wai Li Ling, Gabriel Mugny, Peter Reiss
{"title":"用取代硫脲连续流合成PbS/CdS量子点","authors":"Pierre Machut, Anna Karina Antonini, Céline Rivaux, Marina Gromova, Harinderbir Kaur, Wai Li Ling, Gabriel Mugny, Peter Reiss","doi":"10.1007/s12274-024-7003-9","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance the reproducibility and scale up the synthesis of colloidal quantum dots (QDs), continuous flow synthesis is an appealing alternative to the widely used batch synthesis. Amongst other advantages, the strongly enhanced heat and mass transfer in small tubular reactors combined with controlled pressure can be cited. Nonetheless, the widespread use of this technique is hampered by special requirements such as the absence of solid or gaseous products and the room-temperature solubility of precursors. Therefore, the transfer of established reaction conditions from batch to flow is not straightforward and in most reported works the optical properties of the obtained QDs lag behind those prepared in batch reactions. This is also the case for PbS-based QDs, which are established near infrared (NIR) absorbers/emitters. Here we identified experimental conditions giving access to high-quality PbS core and PbS/CdS core/shell QDs obtained in an automated, easily scalable continuous flow synthesis. In particular, substituted thioureas have been selected as the sulfur source and <i>ex-situ</i> synthesized lead and cadmium oleate as the metal precursors, and appropriate solvent mixtures have been identified for each precursor. Highly luminescent PbS/CdS QDs emitting at the target wavelengths 940 and 1130 nm of special interest for NIR light-emitting diodes have been prepared, exhibiting a photoluminescence quantum yield up to 91%.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 :","pages":"10677 - 10684"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous flow synthesis of PbS/CdS quantum dots using substituted thioureas\",\"authors\":\"Pierre Machut, Anna Karina Antonini, Céline Rivaux, Marina Gromova, Harinderbir Kaur, Wai Li Ling, Gabriel Mugny, Peter Reiss\",\"doi\":\"10.1007/s12274-024-7003-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To enhance the reproducibility and scale up the synthesis of colloidal quantum dots (QDs), continuous flow synthesis is an appealing alternative to the widely used batch synthesis. Amongst other advantages, the strongly enhanced heat and mass transfer in small tubular reactors combined with controlled pressure can be cited. Nonetheless, the widespread use of this technique is hampered by special requirements such as the absence of solid or gaseous products and the room-temperature solubility of precursors. Therefore, the transfer of established reaction conditions from batch to flow is not straightforward and in most reported works the optical properties of the obtained QDs lag behind those prepared in batch reactions. This is also the case for PbS-based QDs, which are established near infrared (NIR) absorbers/emitters. Here we identified experimental conditions giving access to high-quality PbS core and PbS/CdS core/shell QDs obtained in an automated, easily scalable continuous flow synthesis. In particular, substituted thioureas have been selected as the sulfur source and <i>ex-situ</i> synthesized lead and cadmium oleate as the metal precursors, and appropriate solvent mixtures have been identified for each precursor. Highly luminescent PbS/CdS QDs emitting at the target wavelengths 940 and 1130 nm of special interest for NIR light-emitting diodes have been prepared, exhibiting a photoluminescence quantum yield up to 91%.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 :\",\"pages\":\"10677 - 10684\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-7003-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-7003-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Continuous flow synthesis of PbS/CdS quantum dots using substituted thioureas
To enhance the reproducibility and scale up the synthesis of colloidal quantum dots (QDs), continuous flow synthesis is an appealing alternative to the widely used batch synthesis. Amongst other advantages, the strongly enhanced heat and mass transfer in small tubular reactors combined with controlled pressure can be cited. Nonetheless, the widespread use of this technique is hampered by special requirements such as the absence of solid or gaseous products and the room-temperature solubility of precursors. Therefore, the transfer of established reaction conditions from batch to flow is not straightforward and in most reported works the optical properties of the obtained QDs lag behind those prepared in batch reactions. This is also the case for PbS-based QDs, which are established near infrared (NIR) absorbers/emitters. Here we identified experimental conditions giving access to high-quality PbS core and PbS/CdS core/shell QDs obtained in an automated, easily scalable continuous flow synthesis. In particular, substituted thioureas have been selected as the sulfur source and ex-situ synthesized lead and cadmium oleate as the metal precursors, and appropriate solvent mixtures have been identified for each precursor. Highly luminescent PbS/CdS QDs emitting at the target wavelengths 940 and 1130 nm of special interest for NIR light-emitting diodes have been prepared, exhibiting a photoluminescence quantum yield up to 91%.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.