球上均匀精确磁流的可积性

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Vladimir Dragović, Borislav Gajić, Božidar Jovanović
{"title":"球上均匀精确磁流的可积性","authors":"Vladimir Dragović,&nbsp;Borislav Gajić,&nbsp;Božidar Jovanović","doi":"10.1134/S1560354725040082","DOIUrl":null,"url":null,"abstract":"<div><p>We consider motion of a material point placed in a constant homogeneous magnetic field in <span>\\(\\mathbb{R}^{n}\\)</span> and also motion restricted to the sphere <span>\\(S^{n-1}\\)</span>.\nWhile there is an obvious integrability of the magnetic system in <span>\\(\\mathbb{R}^{n}\\)</span>, the integrability of the system restricted to the sphere <span>\\(S^{n-1}\\)</span> is highly nontrivial. We prove\ncomplete integrability of the obtained restricted magnetic systems for <span>\\(n\\leqslant 6\\)</span>. The first integrals of motion of the magnetic flows on the spheres <span>\\(S^{n-1}\\)</span>, for <span>\\(n=5\\)</span> and <span>\\(n=6\\)</span>, are polynomials of degree\n<span>\\(1\\)</span>, <span>\\(2\\)</span>, and <span>\\(3\\)</span> in momenta.\nWe prove noncommutative integrability of the obtained magnetic flows for any <span>\\(n\\geqslant 7\\)</span> when the systems allow a reduction to the cases with <span>\\(n\\leqslant 6\\)</span>. We conjecture that the restricted magnetic systems on <span>\\(S^{n-1}\\)</span> are integrable for all <span>\\(n\\)</span>.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 Editors:","pages":"582 - 597"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrability of Homogeneous Exact Magnetic Flows on Spheres\",\"authors\":\"Vladimir Dragović,&nbsp;Borislav Gajić,&nbsp;Božidar Jovanović\",\"doi\":\"10.1134/S1560354725040082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider motion of a material point placed in a constant homogeneous magnetic field in <span>\\\\(\\\\mathbb{R}^{n}\\\\)</span> and also motion restricted to the sphere <span>\\\\(S^{n-1}\\\\)</span>.\\nWhile there is an obvious integrability of the magnetic system in <span>\\\\(\\\\mathbb{R}^{n}\\\\)</span>, the integrability of the system restricted to the sphere <span>\\\\(S^{n-1}\\\\)</span> is highly nontrivial. We prove\\ncomplete integrability of the obtained restricted magnetic systems for <span>\\\\(n\\\\leqslant 6\\\\)</span>. The first integrals of motion of the magnetic flows on the spheres <span>\\\\(S^{n-1}\\\\)</span>, for <span>\\\\(n=5\\\\)</span> and <span>\\\\(n=6\\\\)</span>, are polynomials of degree\\n<span>\\\\(1\\\\)</span>, <span>\\\\(2\\\\)</span>, and <span>\\\\(3\\\\)</span> in momenta.\\nWe prove noncommutative integrability of the obtained magnetic flows for any <span>\\\\(n\\\\geqslant 7\\\\)</span> when the systems allow a reduction to the cases with <span>\\\\(n\\\\leqslant 6\\\\)</span>. We conjecture that the restricted magnetic systems on <span>\\\\(S^{n-1}\\\\)</span> are integrable for all <span>\\\\(n\\\\)</span>.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"30 Editors:\",\"pages\":\"582 - 597\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354725040082\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354725040082","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑放置在\(\mathbb{R}^{n}\)中恒定均匀磁场中的质点的运动,以及限制在\(S^{n-1}\)中的运动。虽然在\(\mathbb{R}^{n}\)中磁系统具有明显的可积性,但该系统在球体\(S^{n-1}\)上的可积性是非平凡的。我们证明了\(n\leqslant 6\)的受限磁系统的完全可积性。磁流在球体\(S^{n-1}\)上运动的第一个积分,对于\(n=5\)和\(n=6\),是动量的次多项式\(1\), \(2\)和\(3\)。当系统允许约简到\(n\leqslant 6\)时,证明了所得到的磁流对于任意\(n\geqslant 7\)具有非交换可积性。我们推测\(S^{n-1}\)上的受限磁系对所有\(n\)都是可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrability of Homogeneous Exact Magnetic Flows on Spheres

We consider motion of a material point placed in a constant homogeneous magnetic field in \(\mathbb{R}^{n}\) and also motion restricted to the sphere \(S^{n-1}\). While there is an obvious integrability of the magnetic system in \(\mathbb{R}^{n}\), the integrability of the system restricted to the sphere \(S^{n-1}\) is highly nontrivial. We prove complete integrability of the obtained restricted magnetic systems for \(n\leqslant 6\). The first integrals of motion of the magnetic flows on the spheres \(S^{n-1}\), for \(n=5\) and \(n=6\), are polynomials of degree \(1\), \(2\), and \(3\) in momenta. We prove noncommutative integrability of the obtained magnetic flows for any \(n\geqslant 7\) when the systems allow a reduction to the cases with \(n\leqslant 6\). We conjecture that the restricted magnetic systems on \(S^{n-1}\) are integrable for all \(n\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信