Chenying Li, Jianzhong Li, Lei Ji, Yibin Zhu, Jiajia Liu, Jiatao Zhang
{"title":"掺杂量子点锚定水凝胶传感器实时荧光检测食品腐败","authors":"Chenying Li, Jianzhong Li, Lei Ji, Yibin Zhu, Jiajia Liu, Jiatao Zhang","doi":"10.1007/s12274-024-6957-y","DOIUrl":null,"url":null,"abstract":"<div><p>Spermine assumes a pivotal role in assessing food safety due to its potential to induce a spectrum of diseases upon excessive consumption. However, contemporary spermine detection methodologies, exemplified by high-performance liquid chromatography (HPLC), demand costly instrumentation and the expertise of skilled technicians. To address this challenge, the study introduces a portable fluorescence sensing platform. Ratiometric fluorescent probes were realized through the utilization of CdS quantum dots deeply doped with Ag<sup>+</sup> (CdS:Ag QDs) and nitrogen-doped carbon quantum dots (N-CQDs). Hydrogen bonds formed between CdS:Ag QDs and spermine result in the formation of the assembly and the decreasing of the fluorescence intensity. In an effort to broaden the applicative scope and streamline deployment processes, fluorescent sensing hydrogels were meticulously engineered, capitalizing on the swelling properties inherent in polyvinyl alcohol (PVA) hydrogels. The systematic delineation of the correlation between 1 − <i>R/B</i> and spermine concentration facilitates the quantitative determination of spermine concentration. The incorporation of this composite construct serves to alleviate environmental influences on the probes, thereby augmenting their precision. The portable fluorescent sensing platform proves pivotal in expeditiously measuring spermine concentration within the fluorescent sensing hydrogel, enabling a quantitative assessment of pork freshness. The utilization of this platform for food freshness evaluation imparts the benefits of convenience, cost-effectiveness, and intuitive operation.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 :","pages":"10467 - 10475"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time fluorescent detection of food spoilage with doped quantum dots-anchored hydrogel sensor\",\"authors\":\"Chenying Li, Jianzhong Li, Lei Ji, Yibin Zhu, Jiajia Liu, Jiatao Zhang\",\"doi\":\"10.1007/s12274-024-6957-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spermine assumes a pivotal role in assessing food safety due to its potential to induce a spectrum of diseases upon excessive consumption. However, contemporary spermine detection methodologies, exemplified by high-performance liquid chromatography (HPLC), demand costly instrumentation and the expertise of skilled technicians. To address this challenge, the study introduces a portable fluorescence sensing platform. Ratiometric fluorescent probes were realized through the utilization of CdS quantum dots deeply doped with Ag<sup>+</sup> (CdS:Ag QDs) and nitrogen-doped carbon quantum dots (N-CQDs). Hydrogen bonds formed between CdS:Ag QDs and spermine result in the formation of the assembly and the decreasing of the fluorescence intensity. In an effort to broaden the applicative scope and streamline deployment processes, fluorescent sensing hydrogels were meticulously engineered, capitalizing on the swelling properties inherent in polyvinyl alcohol (PVA) hydrogels. The systematic delineation of the correlation between 1 − <i>R/B</i> and spermine concentration facilitates the quantitative determination of spermine concentration. The incorporation of this composite construct serves to alleviate environmental influences on the probes, thereby augmenting their precision. The portable fluorescent sensing platform proves pivotal in expeditiously measuring spermine concentration within the fluorescent sensing hydrogel, enabling a quantitative assessment of pork freshness. The utilization of this platform for food freshness evaluation imparts the benefits of convenience, cost-effectiveness, and intuitive operation.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 :\",\"pages\":\"10467 - 10475\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6957-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6957-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Real-time fluorescent detection of food spoilage with doped quantum dots-anchored hydrogel sensor
Spermine assumes a pivotal role in assessing food safety due to its potential to induce a spectrum of diseases upon excessive consumption. However, contemporary spermine detection methodologies, exemplified by high-performance liquid chromatography (HPLC), demand costly instrumentation and the expertise of skilled technicians. To address this challenge, the study introduces a portable fluorescence sensing platform. Ratiometric fluorescent probes were realized through the utilization of CdS quantum dots deeply doped with Ag+ (CdS:Ag QDs) and nitrogen-doped carbon quantum dots (N-CQDs). Hydrogen bonds formed between CdS:Ag QDs and spermine result in the formation of the assembly and the decreasing of the fluorescence intensity. In an effort to broaden the applicative scope and streamline deployment processes, fluorescent sensing hydrogels were meticulously engineered, capitalizing on the swelling properties inherent in polyvinyl alcohol (PVA) hydrogels. The systematic delineation of the correlation between 1 − R/B and spermine concentration facilitates the quantitative determination of spermine concentration. The incorporation of this composite construct serves to alleviate environmental influences on the probes, thereby augmenting their precision. The portable fluorescent sensing platform proves pivotal in expeditiously measuring spermine concentration within the fluorescent sensing hydrogel, enabling a quantitative assessment of pork freshness. The utilization of this platform for food freshness evaluation imparts the benefits of convenience, cost-effectiveness, and intuitive operation.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.