{"title":"机械系统中的度量几何和强迫振荡","authors":"Ivan Yu. Polekhin","doi":"10.1134/S1560354725040173","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of existence of forced oscillations on a Riemannian manifold, the metric on which is defined by the kinetic energy of a mechanical system. Under the assumption that the generalized forces are periodic functions of time, we find periodic solutions of the same period. We present sufficient conditions for the existence of such solutions, which essentially depend on the behavior of geodesics on the corresponding Riemannian manifold.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 Editors:","pages":"732 - 741"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metric Geometry and Forced Oscillations in Mechanical Systems\",\"authors\":\"Ivan Yu. Polekhin\",\"doi\":\"10.1134/S1560354725040173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the problem of existence of forced oscillations on a Riemannian manifold, the metric on which is defined by the kinetic energy of a mechanical system. Under the assumption that the generalized forces are periodic functions of time, we find periodic solutions of the same period. We present sufficient conditions for the existence of such solutions, which essentially depend on the behavior of geodesics on the corresponding Riemannian manifold.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"30 Editors:\",\"pages\":\"732 - 741\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354725040173\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354725040173","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Metric Geometry and Forced Oscillations in Mechanical Systems
We consider the problem of existence of forced oscillations on a Riemannian manifold, the metric on which is defined by the kinetic energy of a mechanical system. Under the assumption that the generalized forces are periodic functions of time, we find periodic solutions of the same period. We present sufficient conditions for the existence of such solutions, which essentially depend on the behavior of geodesics on the corresponding Riemannian manifold.
期刊介绍:
Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.