一类无Ambrosetti-Rabinowitz条件的变指数非局部kirchhoff型双相问题

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Hind Bouaam, Mohamed El Ouaarabi, Said Melliani
{"title":"一类无Ambrosetti-Rabinowitz条件的变指数非局部kirchhoff型双相问题","authors":"Hind Bouaam,&nbsp;Mohamed El Ouaarabi,&nbsp;Said Melliani","doi":"10.1007/s40995-025-01813-1","DOIUrl":null,"url":null,"abstract":"<div><p>On a compact Riemannian manifold without boundary, this work deals with a non-local Kirchhoff-type double phase problem with variable exponents and without the Ambrosetti-Rabinowitz. The first objective of this work is to establish the existence of least energy solutions by using the Mountain Pass Theorem and the restriction of Nehari manifold. Furthermore, the second objective is to establish the existence of an infinite number of small and large energy solutions. To obtain these multiplicity results, respectively the Fountain Theorem and the Dual Fountain Theorem are used.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 5","pages":"1389 - 1401"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Class of Non-Local Kirchhoff-Type Double Phase Problem with Variable Exponents and Without the Ambrosetti-Rabinowitz Condition\",\"authors\":\"Hind Bouaam,&nbsp;Mohamed El Ouaarabi,&nbsp;Said Melliani\",\"doi\":\"10.1007/s40995-025-01813-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On a compact Riemannian manifold without boundary, this work deals with a non-local Kirchhoff-type double phase problem with variable exponents and without the Ambrosetti-Rabinowitz. The first objective of this work is to establish the existence of least energy solutions by using the Mountain Pass Theorem and the restriction of Nehari manifold. Furthermore, the second objective is to establish the existence of an infinite number of small and large energy solutions. To obtain these multiplicity results, respectively the Fountain Theorem and the Dual Fountain Theorem are used.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 5\",\"pages\":\"1389 - 1401\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-025-01813-1\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-025-01813-1","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在无边界的紧致黎曼流形上,研究了不含Ambrosetti-Rabinowitz的变指数非局部kirchhoff型双相问题。本文的第一个目的是利用山口定理和Nehari流形的限制,建立最小能量解的存在性。此外,第二个目标是建立无限数量的大小能量解的存在性。为了得到这些多重性的结果,分别使用了喷泉定理和对偶喷泉定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Class of Non-Local Kirchhoff-Type Double Phase Problem with Variable Exponents and Without the Ambrosetti-Rabinowitz Condition

On a compact Riemannian manifold without boundary, this work deals with a non-local Kirchhoff-type double phase problem with variable exponents and without the Ambrosetti-Rabinowitz. The first objective of this work is to establish the existence of least energy solutions by using the Mountain Pass Theorem and the restriction of Nehari manifold. Furthermore, the second objective is to establish the existence of an infinite number of small and large energy solutions. To obtain these multiplicity results, respectively the Fountain Theorem and the Dual Fountain Theorem are used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信