概率赋范空间上集值函数序列的\(\varvec{St^{\alpha \beta }_{\gamma }}\) -图和\(\varvec{St^{\alpha \beta }_{\gamma }}\) -点收敛性

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
SK Ashadul Rahaman, Mohammad Mursaleen
{"title":"概率赋范空间上集值函数序列的\\(\\varvec{St^{\\alpha \\beta }_{\\gamma }}\\) -图和\\(\\varvec{St^{\\alpha \\beta }_{\\gamma }}\\) -点收敛性","authors":"SK Ashadul Rahaman,&nbsp;Mohammad Mursaleen","doi":"10.1007/s40995-025-01812-2","DOIUrl":null,"url":null,"abstract":"<div><p>The notions of graphical and pointwise limits of a sequence of set-valued functions defined from one metric space into another were studied by Aubin and Frankowska. In this study, by using the concept of <span>\\(\\alpha \\beta\\)</span>-density of subsets of natural numbers, we introduce the notions of <span>\\(St^{\\alpha \\beta }_{\\gamma }\\)</span>-graphical and <span>\\(St^{\\alpha \\beta }_{\\gamma }\\)</span>-pointwise limits of a sequence of set-valued functions defined from one probabilistic normed space into another. Subsequently, the article introduces the notions of <span>\\(St^{\\alpha \\beta }_{\\gamma }\\)</span>-graph and <span>\\(St^{\\alpha \\beta }_{\\gamma }\\)</span>-pointwise convergence of these sequences. Moreover, we look at the correspondence between these convergences and establish some associated theorems.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 5","pages":"1373 - 1387"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On \\\\(\\\\varvec{St^{\\\\alpha \\\\beta }_{\\\\gamma }}\\\\)-Graph and \\\\(\\\\varvec{St^{\\\\alpha \\\\beta }_{\\\\gamma }}\\\\)-Pointwise Convergence of Sequences of Set-Valued Functions Defined on Probabilistic Normed Spaces\",\"authors\":\"SK Ashadul Rahaman,&nbsp;Mohammad Mursaleen\",\"doi\":\"10.1007/s40995-025-01812-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The notions of graphical and pointwise limits of a sequence of set-valued functions defined from one metric space into another were studied by Aubin and Frankowska. In this study, by using the concept of <span>\\\\(\\\\alpha \\\\beta\\\\)</span>-density of subsets of natural numbers, we introduce the notions of <span>\\\\(St^{\\\\alpha \\\\beta }_{\\\\gamma }\\\\)</span>-graphical and <span>\\\\(St^{\\\\alpha \\\\beta }_{\\\\gamma }\\\\)</span>-pointwise limits of a sequence of set-valued functions defined from one probabilistic normed space into another. Subsequently, the article introduces the notions of <span>\\\\(St^{\\\\alpha \\\\beta }_{\\\\gamma }\\\\)</span>-graph and <span>\\\\(St^{\\\\alpha \\\\beta }_{\\\\gamma }\\\\)</span>-pointwise convergence of these sequences. Moreover, we look at the correspondence between these convergences and establish some associated theorems.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 5\",\"pages\":\"1373 - 1387\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-025-01812-2\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-025-01812-2","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Aubin和Frankowska研究了从一个度量空间到另一个度量空间的集值函数序列的图形极限和点极限的概念。本文利用自然数子集的\(\alpha \beta\) -密度的概念,引入集值函数序列的\(St^{\alpha \beta }_{\gamma }\) -图极限和\(St^{\alpha \beta }_{\gamma }\) -点极限的概念,这些函数序列从一个概率赋范空间定义到另一个概率赋范空间。随后,本文引入了这些序列的\(St^{\alpha \beta }_{\gamma }\) -图和\(St^{\alpha \beta }_{\gamma }\) -点收敛的概念。此外,我们还研究了这些收敛之间的对应关系,并建立了一些相关的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On \(\varvec{St^{\alpha \beta }_{\gamma }}\)-Graph and \(\varvec{St^{\alpha \beta }_{\gamma }}\)-Pointwise Convergence of Sequences of Set-Valued Functions Defined on Probabilistic Normed Spaces

The notions of graphical and pointwise limits of a sequence of set-valued functions defined from one metric space into another were studied by Aubin and Frankowska. In this study, by using the concept of \(\alpha \beta\)-density of subsets of natural numbers, we introduce the notions of \(St^{\alpha \beta }_{\gamma }\)-graphical and \(St^{\alpha \beta }_{\gamma }\)-pointwise limits of a sequence of set-valued functions defined from one probabilistic normed space into another. Subsequently, the article introduces the notions of \(St^{\alpha \beta }_{\gamma }\)-graph and \(St^{\alpha \beta }_{\gamma }\)-pointwise convergence of these sequences. Moreover, we look at the correspondence between these convergences and establish some associated theorems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信