D. A. Khanin, V. V. Kuznetsov, D. D. Makhno, V. V. Dushik, E. A. Ruban
{"title":"开路条件下铂沉积法制备铂(WC)析氢反应催化剂","authors":"D. A. Khanin, V. V. Kuznetsov, D. D. Makhno, V. V. Dushik, E. A. Ruban","doi":"10.1134/S1023193524700496","DOIUrl":null,"url":null,"abstract":"<p>Pt(WC<sub>1 –</sub> <sub><i>x</i></sub>)/Cu electrodes are obtained by depositing platinum onto the surface of tungsten carbides under open circuit conditions. A tungsten carbide layer with a thickness of ca. 20 μm is formed preliminarily on the surface of copper plates by the thermolysis of a gas mixture WF<sub>6</sub> + H<sub>2</sub> + C<sub>3</sub>H<sub>8</sub>. During the open-circuit deposition, platinum nanoparticles are formed on the surface of tungsten carbides. The oxidation of surface layers of tungsten carbides provides the electrons to reduce Pt(II) compounds. The morphology of thus prepared electrodes is studied using scanning electron microscopy (SEM). The chemical composition of the surface layers is studied using X-ray photoelectron spectroscopy (XPS). The phase composition is studied using X-ray phase analysis (XRD). The deposition of small amounts of platinum (0.002–0.24 mg Pt/cm<sup>2</sup> of the geometric electrode surface) gives rise to a significant increase in the hydrogen evolution reaction (HER) rate. The catalytic activity for the sample loaded with 0.24 mg/cm<sup>2</sup> platinum approaches that of a Pt/Pt electrode. The HER voltammetric characteristics on these Pt(WC<sub>1 –</sub> <sub><i>x</i></sub>)/Cu electrodes are determined. The hydrogen evolution is assumed to proceed on the catalytically active platinum nanoparticles.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 Based","pages":"957 - 968"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Pt(WC) Catalysts for the Hydrogen Evolution Reaction (HER) by Platinum Deposition under Open Circuit Conditions\",\"authors\":\"D. A. Khanin, V. V. Kuznetsov, D. D. Makhno, V. V. Dushik, E. A. Ruban\",\"doi\":\"10.1134/S1023193524700496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pt(WC<sub>1 –</sub> <sub><i>x</i></sub>)/Cu electrodes are obtained by depositing platinum onto the surface of tungsten carbides under open circuit conditions. A tungsten carbide layer with a thickness of ca. 20 μm is formed preliminarily on the surface of copper plates by the thermolysis of a gas mixture WF<sub>6</sub> + H<sub>2</sub> + C<sub>3</sub>H<sub>8</sub>. During the open-circuit deposition, platinum nanoparticles are formed on the surface of tungsten carbides. The oxidation of surface layers of tungsten carbides provides the electrons to reduce Pt(II) compounds. The morphology of thus prepared electrodes is studied using scanning electron microscopy (SEM). The chemical composition of the surface layers is studied using X-ray photoelectron spectroscopy (XPS). The phase composition is studied using X-ray phase analysis (XRD). The deposition of small amounts of platinum (0.002–0.24 mg Pt/cm<sup>2</sup> of the geometric electrode surface) gives rise to a significant increase in the hydrogen evolution reaction (HER) rate. The catalytic activity for the sample loaded with 0.24 mg/cm<sup>2</sup> platinum approaches that of a Pt/Pt electrode. The HER voltammetric characteristics on these Pt(WC<sub>1 –</sub> <sub><i>x</i></sub>)/Cu electrodes are determined. The hydrogen evolution is assumed to proceed on the catalytically active platinum nanoparticles.</p>\",\"PeriodicalId\":760,\"journal\":{\"name\":\"Russian Journal of Electrochemistry\",\"volume\":\"60 Based\",\"pages\":\"957 - 968\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1023193524700496\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524700496","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Synthesis of Pt(WC) Catalysts for the Hydrogen Evolution Reaction (HER) by Platinum Deposition under Open Circuit Conditions
Pt(WC1 –x)/Cu electrodes are obtained by depositing platinum onto the surface of tungsten carbides under open circuit conditions. A tungsten carbide layer with a thickness of ca. 20 μm is formed preliminarily on the surface of copper plates by the thermolysis of a gas mixture WF6 + H2 + C3H8. During the open-circuit deposition, platinum nanoparticles are formed on the surface of tungsten carbides. The oxidation of surface layers of tungsten carbides provides the electrons to reduce Pt(II) compounds. The morphology of thus prepared electrodes is studied using scanning electron microscopy (SEM). The chemical composition of the surface layers is studied using X-ray photoelectron spectroscopy (XPS). The phase composition is studied using X-ray phase analysis (XRD). The deposition of small amounts of platinum (0.002–0.24 mg Pt/cm2 of the geometric electrode surface) gives rise to a significant increase in the hydrogen evolution reaction (HER) rate. The catalytic activity for the sample loaded with 0.24 mg/cm2 platinum approaches that of a Pt/Pt electrode. The HER voltammetric characteristics on these Pt(WC1 –x)/Cu electrodes are determined. The hydrogen evolution is assumed to proceed on the catalytically active platinum nanoparticles.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.