利用半圆形阱增强pemfc的反应物分布和功率密度

IF 0.8 4区 工程技术 Q4 ELECTROCHEMISTRY
T. Raja, G. Kumaresan
{"title":"利用半圆形阱增强pemfc的反应物分布和功率密度","authors":"T. Raja,&nbsp;G. Kumaresan","doi":"10.1134/S1023193524700563","DOIUrl":null,"url":null,"abstract":"<p>The performance enhancement of proton exchange membrane fuel cells (PEMFCs) is directly correlated with water flooding, which is based on the design and operational parameters of the flow field. Flooding affects reactant distributions; hence, effective water management is necessary for optimizing the performance of PEMFCs. The present study, investigated the performance of PEMFCs by introducing a novel semicircular trap shape in the flow field, and assessed the effect of increasing the number of traps and the size of the trap shape. The introduction of the trap shape in the flow field, reduces the land width at the location of the bipolar plate. This reduced land width increases the current density per unit of active area. Therefore, figuring out the perfect size and quantity of traps is essential to improving PEMFC efficacy. The results show that a channel with a single trap shape of 2.0 mm width and 1.0 mm height provide higher current density. The trap shapes improve reactant distribution, effective water management and enhance the power density. This novel trap shape can be implemented in a conventional channel providing an inexpensive solution to enhance PEMFC performance.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 Based","pages":"1007 - 1019"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the Reactant Distribution and Power Density of PEMFCs Using a Semicircular Trap Shape in the Flow-Field\",\"authors\":\"T. Raja,&nbsp;G. Kumaresan\",\"doi\":\"10.1134/S1023193524700563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance enhancement of proton exchange membrane fuel cells (PEMFCs) is directly correlated with water flooding, which is based on the design and operational parameters of the flow field. Flooding affects reactant distributions; hence, effective water management is necessary for optimizing the performance of PEMFCs. The present study, investigated the performance of PEMFCs by introducing a novel semicircular trap shape in the flow field, and assessed the effect of increasing the number of traps and the size of the trap shape. The introduction of the trap shape in the flow field, reduces the land width at the location of the bipolar plate. This reduced land width increases the current density per unit of active area. Therefore, figuring out the perfect size and quantity of traps is essential to improving PEMFC efficacy. The results show that a channel with a single trap shape of 2.0 mm width and 1.0 mm height provide higher current density. The trap shapes improve reactant distribution, effective water management and enhance the power density. This novel trap shape can be implemented in a conventional channel providing an inexpensive solution to enhance PEMFC performance.</p>\",\"PeriodicalId\":760,\"journal\":{\"name\":\"Russian Journal of Electrochemistry\",\"volume\":\"60 Based\",\"pages\":\"1007 - 1019\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1023193524700563\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524700563","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(pemfc)性能的提高与水驱直接相关,而水驱取决于流场的设计和运行参数。驱油影响反应物分布;因此,有效的水管理是优化pemfc性能的必要条件。本研究通过在流场中引入一种新型半圆形陷阱形状来研究pemfc的性能,并评估了增加陷阱数量和陷阱形状尺寸的效果。在流场中引入陷阱形状,减小了双极板位置的陆地宽度。减少的土地宽度增加了每单位活跃面积的电流密度。因此,确定最佳的捕集器尺寸和数量是提高PEMFC效能的关键。结果表明,宽度为2.0 mm、高度为1.0 mm的单一陷阱形状通道可以提供更高的电流密度。捕集器的形状改善了反应物的分布,有效的水管理,提高了功率密度。这种新颖的陷阱形状可以在传统通道中实现,为提高PEMFC性能提供了一种廉价的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancement of the Reactant Distribution and Power Density of PEMFCs Using a Semicircular Trap Shape in the Flow-Field

Enhancement of the Reactant Distribution and Power Density of PEMFCs Using a Semicircular Trap Shape in the Flow-Field

The performance enhancement of proton exchange membrane fuel cells (PEMFCs) is directly correlated with water flooding, which is based on the design and operational parameters of the flow field. Flooding affects reactant distributions; hence, effective water management is necessary for optimizing the performance of PEMFCs. The present study, investigated the performance of PEMFCs by introducing a novel semicircular trap shape in the flow field, and assessed the effect of increasing the number of traps and the size of the trap shape. The introduction of the trap shape in the flow field, reduces the land width at the location of the bipolar plate. This reduced land width increases the current density per unit of active area. Therefore, figuring out the perfect size and quantity of traps is essential to improving PEMFC efficacy. The results show that a channel with a single trap shape of 2.0 mm width and 1.0 mm height provide higher current density. The trap shapes improve reactant distribution, effective water management and enhance the power density. This novel trap shape can be implemented in a conventional channel providing an inexpensive solution to enhance PEMFC performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Electrochemistry
Russian Journal of Electrochemistry 工程技术-电化学
CiteScore
1.90
自引率
8.30%
发文量
102
审稿时长
6 months
期刊介绍: Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信