Desta M. Ulisso, Pooja K. Bhoj, Sanjay S. Kolekar, Jaeyeong Heo and Anil Vithal Ghule
{"title":"核壳异质结构镍锰层状双层hydroxide@ZnCo2O4纳米复合电极增强非对称超级电容器应用","authors":"Desta M. Ulisso, Pooja K. Bhoj, Sanjay S. Kolekar, Jaeyeong Heo and Anil Vithal Ghule","doi":"10.1039/D5SE00863H","DOIUrl":null,"url":null,"abstract":"<p >Designing hierarchically core–shell heterostructured nanocomposite electrode materials with more active sites and delivering enhanced electrochemical performances for supercapacitors is pursued with great interest. With this motivation, herein, we report a facile two-step reflux condensation method for developing heterostructured core–shell nickel manganese layered double hydroxide nanosheets@ZnCo<small><sub>2</sub></small>O<small><sub>4</sub></small> on a flexible stainless steel mesh substrate (NM-LDH@ZCO/SSM) as a nanocomposite electrode. The ZnCo<small><sub>2</sub></small>O<small><sub>4</sub></small> nanorods/SSM core structure (ZCO/SSM) facilitates the deposition of the NiMn-LDH shell structure (NM-LDH), forming a core–shell NM-LDH@ZCO/SSM nanocomposite electrode. The structural and morphological characterization studies were done using XRD, FT-IR, FE-SEM, EDAX, XPS, and TEM to confirm the synthesis of the nanocomposite electrode. The NM-LDH@ZCO/SSM nanocomposite demonstrated an ultrahigh specific capacitance of 3169.14 F g<small><sup>−1</sup></small> at 10 mA cm<small><sup>−2</sup></small> with a capacitance retention (CR) of 89.3% after 3000 galvanometric charging–discharging (GCD) cycles at a higher current density (CD) of 55 mA cm<small><sup>−2</sup></small>. An asymmetric supercapacitor device fabricated by using the NM-LDH@ZCO/SSM nanocomposite as the cathode and activated carbon (AC/SSM) as the anode exhibited an energy density of 58.7 Wh kg<small><sup>−1</sup></small> at 2492 W kg<small><sup>−1</sup></small>, and 91% CR after 5000 GCD cycles at 25 mA cm<small><sup>−2</sup></small>. The results reveal that the NM-LDH@ZCO/SSM nanocomposite is one of the potential candidates for high-performance supercapacitors and is expected to pave the way for its future exploration in energy storage devices.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 19","pages":" 5354-5366"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A core–shell heterostructured nickel manganese layered double hydroxide@ZnCo2O4 nanocomposite electrode for enhanced asymmetric supercapacitor applications\",\"authors\":\"Desta M. Ulisso, Pooja K. Bhoj, Sanjay S. Kolekar, Jaeyeong Heo and Anil Vithal Ghule\",\"doi\":\"10.1039/D5SE00863H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Designing hierarchically core–shell heterostructured nanocomposite electrode materials with more active sites and delivering enhanced electrochemical performances for supercapacitors is pursued with great interest. With this motivation, herein, we report a facile two-step reflux condensation method for developing heterostructured core–shell nickel manganese layered double hydroxide nanosheets@ZnCo<small><sub>2</sub></small>O<small><sub>4</sub></small> on a flexible stainless steel mesh substrate (NM-LDH@ZCO/SSM) as a nanocomposite electrode. The ZnCo<small><sub>2</sub></small>O<small><sub>4</sub></small> nanorods/SSM core structure (ZCO/SSM) facilitates the deposition of the NiMn-LDH shell structure (NM-LDH), forming a core–shell NM-LDH@ZCO/SSM nanocomposite electrode. The structural and morphological characterization studies were done using XRD, FT-IR, FE-SEM, EDAX, XPS, and TEM to confirm the synthesis of the nanocomposite electrode. The NM-LDH@ZCO/SSM nanocomposite demonstrated an ultrahigh specific capacitance of 3169.14 F g<small><sup>−1</sup></small> at 10 mA cm<small><sup>−2</sup></small> with a capacitance retention (CR) of 89.3% after 3000 galvanometric charging–discharging (GCD) cycles at a higher current density (CD) of 55 mA cm<small><sup>−2</sup></small>. An asymmetric supercapacitor device fabricated by using the NM-LDH@ZCO/SSM nanocomposite as the cathode and activated carbon (AC/SSM) as the anode exhibited an energy density of 58.7 Wh kg<small><sup>−1</sup></small> at 2492 W kg<small><sup>−1</sup></small>, and 91% CR after 5000 GCD cycles at 25 mA cm<small><sup>−2</sup></small>. The results reveal that the NM-LDH@ZCO/SSM nanocomposite is one of the potential candidates for high-performance supercapacitors and is expected to pave the way for its future exploration in energy storage devices.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 19\",\"pages\":\" 5354-5366\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00863h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00863h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
设计具有更多活性位点的分层核壳异质结构纳米复合电极材料,提高超级电容器的电化学性能是人们关注的焦点。基于这一动机,本文报告了一种简单的两步回流冷凝方法,用于在柔性不锈钢网基板(NM-LDH@ZCO/SSM)上制备异质结构核壳镍锰层状双氢氧化物nanosheets@ZnCo2O4作为纳米复合电极。ZnCo2O4纳米棒/SSM核心结构(ZCO/SSM)促进了NiMn-LDH壳结构(NM-LDH)的沉积,形成了核-壳NM-LDH@ZCO/SSM纳米复合电极。采用XRD、FT-IR、FE-SEM、EDAX、XPS、TEM等手段对纳米复合电极的结构和形态进行了表征。NM-LDH@ZCO/SSM纳米复合材料在10 mA cm−2下具有3169.14 F g−1的超高比电容,在55 mA cm−2的高电流密度(CD)下,经过3000次恒流充放电(GCD)循环后,电容保持率(CR)为89.3%。以NM-LDH@ZCO/SSM纳米复合材料为阴极,活性炭(AC/SSM)为阳极制备的非对称超级电容器在2492 W kg - 1下的能量密度为58.7 Wh kg - 1,在25 mA cm - 2下5000 GCD循环后的CR为91%。结果表明,NM-LDH@ZCO/SSM纳米复合材料是高性能超级电容器的潜在候选材料之一,有望为其未来在储能器件中的探索铺平道路。
A core–shell heterostructured nickel manganese layered double hydroxide@ZnCo2O4 nanocomposite electrode for enhanced asymmetric supercapacitor applications
Designing hierarchically core–shell heterostructured nanocomposite electrode materials with more active sites and delivering enhanced electrochemical performances for supercapacitors is pursued with great interest. With this motivation, herein, we report a facile two-step reflux condensation method for developing heterostructured core–shell nickel manganese layered double hydroxide nanosheets@ZnCo2O4 on a flexible stainless steel mesh substrate (NM-LDH@ZCO/SSM) as a nanocomposite electrode. The ZnCo2O4 nanorods/SSM core structure (ZCO/SSM) facilitates the deposition of the NiMn-LDH shell structure (NM-LDH), forming a core–shell NM-LDH@ZCO/SSM nanocomposite electrode. The structural and morphological characterization studies were done using XRD, FT-IR, FE-SEM, EDAX, XPS, and TEM to confirm the synthesis of the nanocomposite electrode. The NM-LDH@ZCO/SSM nanocomposite demonstrated an ultrahigh specific capacitance of 3169.14 F g−1 at 10 mA cm−2 with a capacitance retention (CR) of 89.3% after 3000 galvanometric charging–discharging (GCD) cycles at a higher current density (CD) of 55 mA cm−2. An asymmetric supercapacitor device fabricated by using the NM-LDH@ZCO/SSM nanocomposite as the cathode and activated carbon (AC/SSM) as the anode exhibited an energy density of 58.7 Wh kg−1 at 2492 W kg−1, and 91% CR after 5000 GCD cycles at 25 mA cm−2. The results reveal that the NM-LDH@ZCO/SSM nanocomposite is one of the potential candidates for high-performance supercapacitors and is expected to pave the way for its future exploration in energy storage devices.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.