{"title":"具有高正塞贝克系数的电解质,由半水合盐水合物生成,用于热电化学转化","authors":"Yohei Matsui and Yuki Maeda","doi":"10.1039/D5SE00924C","DOIUrl":null,"url":null,"abstract":"<p >Various electrolyte designs have been explored to enhance the temperature dependence of the redox potential (Seebeck coefficient) as it determines the cell voltage of thermo-electrochemical devices such as thermally regenerative electrochemical cycles (TRECs). TRECs require redox couples with both high positive and negative Seebeck coefficients to achieve high performance. In our previous study, ferrocyanide/ferricyanide in a mixture of water and tetrabutylammonium fluoride (TBAF) exhibited a high negative Seebeck coefficient owing to the formation and dissociation of semiclathrate hydrate (SCH) induced by temperature variations. In this study, we found that the formation and dissociation of SCH can also provide a high positive Seebeck coefficient (+16 mV K<small><sup>−1</sup></small>) by increasing the weight ratio of TBAF in the electrolyte. The key factor influencing the increase in the Seebeck coefficient is the change in TBAF concentration in the liquid phase, which significantly affects the redox potential of ferrocyanide/ferricyanide. When the TBAF weight ratio in the electrolyte exceeds that of SCH, the effect of SCH formation on the TBAF concentration in the liquid phase is reversed. Therefore, incorporating SCH can enhance the Seebeck coefficient in both positive and negative directions by tailoring the mixing ratio of TBAF. Additionally, we demonstrated a proof-of-concept TREC using the two electrolytes with high positive and negative Seebeck coefficients. The cell demonstrated a significant temperature dependence of the open-circuit voltage, allowing for a much higher average discharge voltage (271 mV) than charge voltage (145 mV), with a small temperature difference between the charge (299 K) and discharge (294 K) processes.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 19","pages":" 5290-5297"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte exhibiting a high positive Seebeck coefficient induced by semiclathrate hydrate formation for thermo-electrochemical conversion\",\"authors\":\"Yohei Matsui and Yuki Maeda\",\"doi\":\"10.1039/D5SE00924C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Various electrolyte designs have been explored to enhance the temperature dependence of the redox potential (Seebeck coefficient) as it determines the cell voltage of thermo-electrochemical devices such as thermally regenerative electrochemical cycles (TRECs). TRECs require redox couples with both high positive and negative Seebeck coefficients to achieve high performance. In our previous study, ferrocyanide/ferricyanide in a mixture of water and tetrabutylammonium fluoride (TBAF) exhibited a high negative Seebeck coefficient owing to the formation and dissociation of semiclathrate hydrate (SCH) induced by temperature variations. In this study, we found that the formation and dissociation of SCH can also provide a high positive Seebeck coefficient (+16 mV K<small><sup>−1</sup></small>) by increasing the weight ratio of TBAF in the electrolyte. The key factor influencing the increase in the Seebeck coefficient is the change in TBAF concentration in the liquid phase, which significantly affects the redox potential of ferrocyanide/ferricyanide. When the TBAF weight ratio in the electrolyte exceeds that of SCH, the effect of SCH formation on the TBAF concentration in the liquid phase is reversed. Therefore, incorporating SCH can enhance the Seebeck coefficient in both positive and negative directions by tailoring the mixing ratio of TBAF. Additionally, we demonstrated a proof-of-concept TREC using the two electrolytes with high positive and negative Seebeck coefficients. The cell demonstrated a significant temperature dependence of the open-circuit voltage, allowing for a much higher average discharge voltage (271 mV) than charge voltage (145 mV), with a small temperature difference between the charge (299 K) and discharge (294 K) processes.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 19\",\"pages\":\" 5290-5297\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00924c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00924c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrolyte exhibiting a high positive Seebeck coefficient induced by semiclathrate hydrate formation for thermo-electrochemical conversion
Various electrolyte designs have been explored to enhance the temperature dependence of the redox potential (Seebeck coefficient) as it determines the cell voltage of thermo-electrochemical devices such as thermally regenerative electrochemical cycles (TRECs). TRECs require redox couples with both high positive and negative Seebeck coefficients to achieve high performance. In our previous study, ferrocyanide/ferricyanide in a mixture of water and tetrabutylammonium fluoride (TBAF) exhibited a high negative Seebeck coefficient owing to the formation and dissociation of semiclathrate hydrate (SCH) induced by temperature variations. In this study, we found that the formation and dissociation of SCH can also provide a high positive Seebeck coefficient (+16 mV K−1) by increasing the weight ratio of TBAF in the electrolyte. The key factor influencing the increase in the Seebeck coefficient is the change in TBAF concentration in the liquid phase, which significantly affects the redox potential of ferrocyanide/ferricyanide. When the TBAF weight ratio in the electrolyte exceeds that of SCH, the effect of SCH formation on the TBAF concentration in the liquid phase is reversed. Therefore, incorporating SCH can enhance the Seebeck coefficient in both positive and negative directions by tailoring the mixing ratio of TBAF. Additionally, we demonstrated a proof-of-concept TREC using the two electrolytes with high positive and negative Seebeck coefficients. The cell demonstrated a significant temperature dependence of the open-circuit voltage, allowing for a much higher average discharge voltage (271 mV) than charge voltage (145 mV), with a small temperature difference between the charge (299 K) and discharge (294 K) processes.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.