{"title":"频率外推的自适应乘法器","authors":"Diego Castelli Lacunza , Carlos A. Sing Long","doi":"10.1016/j.acha.2025.101815","DOIUrl":null,"url":null,"abstract":"<div><div>Resolving the details of an object from coarse-scale measurements is a classical problem in applied mathematics. This problem is usually formulated as extrapolating the Fourier transform of the object from a bounded region to the entire space, that is, in terms of performing <em>extrapolation in frequency</em>. This problem is ill-posed unless one assumes that the object has some additional structure. When the object is compactly supported, then it is well-known that its Fourier transform can be extended to the entire space. However, it is also well-known that this problem is severely ill-conditioned.</div><div>In this work, we assume that the object is known to belong to a collection of compactly supported functions and, instead of performing extrapolation in frequency to the entire space, we study the problem of extrapolating to a larger bounded set using dilations in frequency and a single Fourier multiplier. This is reminiscent of the refinement equation in multiresolution analysis. Under suitable conditions, we prove the existence of a worst-case optimal multiplier over the entire collection, and we show that all such multipliers share the same canonical structure. When the collection is finite, we show that any worst-case optimal multiplier can be represented in terms of an Hermitian matrix. This allows us to introduce a fixed-point iteration to find the optimal multiplier. This leads us to introduce a family of multipliers, which we call <span><math><mstyle><mi>Σ</mi></mstyle></math></span>-multipliers, that can be used to perform extrapolation in frequency. We establish connections between <span><math><mstyle><mi>Σ</mi></mstyle></math></span>-multipliers and multiresolution analysis. We conclude with some numerical experiments illustrating the practical consequences of our results.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"80 ","pages":"Article 101815"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive multipliers for extrapolation in frequency\",\"authors\":\"Diego Castelli Lacunza , Carlos A. Sing Long\",\"doi\":\"10.1016/j.acha.2025.101815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resolving the details of an object from coarse-scale measurements is a classical problem in applied mathematics. This problem is usually formulated as extrapolating the Fourier transform of the object from a bounded region to the entire space, that is, in terms of performing <em>extrapolation in frequency</em>. This problem is ill-posed unless one assumes that the object has some additional structure. When the object is compactly supported, then it is well-known that its Fourier transform can be extended to the entire space. However, it is also well-known that this problem is severely ill-conditioned.</div><div>In this work, we assume that the object is known to belong to a collection of compactly supported functions and, instead of performing extrapolation in frequency to the entire space, we study the problem of extrapolating to a larger bounded set using dilations in frequency and a single Fourier multiplier. This is reminiscent of the refinement equation in multiresolution analysis. Under suitable conditions, we prove the existence of a worst-case optimal multiplier over the entire collection, and we show that all such multipliers share the same canonical structure. When the collection is finite, we show that any worst-case optimal multiplier can be represented in terms of an Hermitian matrix. This allows us to introduce a fixed-point iteration to find the optimal multiplier. This leads us to introduce a family of multipliers, which we call <span><math><mstyle><mi>Σ</mi></mstyle></math></span>-multipliers, that can be used to perform extrapolation in frequency. We establish connections between <span><math><mstyle><mi>Σ</mi></mstyle></math></span>-multipliers and multiresolution analysis. We conclude with some numerical experiments illustrating the practical consequences of our results.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"80 \",\"pages\":\"Article 101815\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000697\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000697","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Adaptive multipliers for extrapolation in frequency
Resolving the details of an object from coarse-scale measurements is a classical problem in applied mathematics. This problem is usually formulated as extrapolating the Fourier transform of the object from a bounded region to the entire space, that is, in terms of performing extrapolation in frequency. This problem is ill-posed unless one assumes that the object has some additional structure. When the object is compactly supported, then it is well-known that its Fourier transform can be extended to the entire space. However, it is also well-known that this problem is severely ill-conditioned.
In this work, we assume that the object is known to belong to a collection of compactly supported functions and, instead of performing extrapolation in frequency to the entire space, we study the problem of extrapolating to a larger bounded set using dilations in frequency and a single Fourier multiplier. This is reminiscent of the refinement equation in multiresolution analysis. Under suitable conditions, we prove the existence of a worst-case optimal multiplier over the entire collection, and we show that all such multipliers share the same canonical structure. When the collection is finite, we show that any worst-case optimal multiplier can be represented in terms of an Hermitian matrix. This allows us to introduce a fixed-point iteration to find the optimal multiplier. This leads us to introduce a family of multipliers, which we call -multipliers, that can be used to perform extrapolation in frequency. We establish connections between -multipliers and multiresolution analysis. We conclude with some numerical experiments illustrating the practical consequences of our results.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.