U-Net用于医学图像分割的分析驱动综述

Fnu Neha , Deepshikha Bhati , Deepak Kumar Shukla , Sonavi Makarand Dalvi , Nikolaos Mantzou , Safa Shubbar
{"title":"U-Net用于医学图像分割的分析驱动综述","authors":"Fnu Neha ,&nbsp;Deepshikha Bhati ,&nbsp;Deepak Kumar Shukla ,&nbsp;Sonavi Makarand Dalvi ,&nbsp;Nikolaos Mantzou ,&nbsp;Safa Shubbar","doi":"10.1016/j.health.2025.100416","DOIUrl":null,"url":null,"abstract":"<div><div>Medical imaging (MI) plays a vital role in healthcare by providing detailed insights into anatomical structures and pathological conditions, supporting accurate diagnosis and treatment planning. Noninvasive modalities, such as X-ray, magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US), produce high-resolution images of internal organs and tissues. The effective interpretation of these images relies on the precise segmentation of the regions of interest (ROI), including organs and lesions. Traditional methods based on manual feature extraction are time-consuming, inconsistent, and not scalable. This review explores recent advances in artificial intelligence (AI)-driven segmentation, focusing on Convolutional Neural Network (CNN) architectures, particularly the U-Net family and its variants—U-Net++, and U-Net 3+. These models enable automated, pixel-wise classification across modalities and have improved segmentation accuracy and efficiency. The review outlines the evolution of U-Net architectures, their clinical integration, and offers a modality-wise comparison. It also addresses challenges such as data heterogeneity, limited generalizability, and model interpretability, proposing solutions including attention mechanisms and Transformer-based designs. Emphasizing clinical applicability, this work bridges the gap between algorithmic development and real-world implementation.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100416"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytics-driven review of U-Net for medical image segmentation\",\"authors\":\"Fnu Neha ,&nbsp;Deepshikha Bhati ,&nbsp;Deepak Kumar Shukla ,&nbsp;Sonavi Makarand Dalvi ,&nbsp;Nikolaos Mantzou ,&nbsp;Safa Shubbar\",\"doi\":\"10.1016/j.health.2025.100416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Medical imaging (MI) plays a vital role in healthcare by providing detailed insights into anatomical structures and pathological conditions, supporting accurate diagnosis and treatment planning. Noninvasive modalities, such as X-ray, magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US), produce high-resolution images of internal organs and tissues. The effective interpretation of these images relies on the precise segmentation of the regions of interest (ROI), including organs and lesions. Traditional methods based on manual feature extraction are time-consuming, inconsistent, and not scalable. This review explores recent advances in artificial intelligence (AI)-driven segmentation, focusing on Convolutional Neural Network (CNN) architectures, particularly the U-Net family and its variants—U-Net++, and U-Net 3+. These models enable automated, pixel-wise classification across modalities and have improved segmentation accuracy and efficiency. The review outlines the evolution of U-Net architectures, their clinical integration, and offers a modality-wise comparison. It also addresses challenges such as data heterogeneity, limited generalizability, and model interpretability, proposing solutions including attention mechanisms and Transformer-based designs. Emphasizing clinical applicability, this work bridges the gap between algorithmic development and real-world implementation.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"8 \",\"pages\":\"Article 100416\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442525000358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学成像(MI)通过提供解剖结构和病理状况的详细信息,支持准确的诊断和治疗计划,在医疗保健中发挥着至关重要的作用。无创模式,如x射线,磁共振成像(MRI),计算机断层扫描(CT)和超声(US),产生内部器官和组织的高分辨率图像。这些图像的有效解释依赖于对感兴趣区域(ROI)的精确分割,包括器官和病变。传统的基于人工特征提取的方法耗时长、不一致且不可扩展。本文探讨了人工智能(AI)驱动的分段技术的最新进展,重点关注卷积神经网络(CNN)架构,特别是U-Net家族及其变体——U-Net++和U-Net 3+。这些模型支持跨模态的自动、逐像素分类,并提高了分割的准确性和效率。这篇综述概述了U-Net体系结构的演变,它们的临床整合,并提供了一个模式明智的比较。它还解决了诸如数据异构、有限的通用性和模型可解释性等挑战,提出了包括注意力机制和基于转换器的设计在内的解决方案。强调临床适用性,这项工作弥合了算法开发和现实世界实现之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analytics-driven review of U-Net for medical image segmentation
Medical imaging (MI) plays a vital role in healthcare by providing detailed insights into anatomical structures and pathological conditions, supporting accurate diagnosis and treatment planning. Noninvasive modalities, such as X-ray, magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US), produce high-resolution images of internal organs and tissues. The effective interpretation of these images relies on the precise segmentation of the regions of interest (ROI), including organs and lesions. Traditional methods based on manual feature extraction are time-consuming, inconsistent, and not scalable. This review explores recent advances in artificial intelligence (AI)-driven segmentation, focusing on Convolutional Neural Network (CNN) architectures, particularly the U-Net family and its variants—U-Net++, and U-Net 3+. These models enable automated, pixel-wise classification across modalities and have improved segmentation accuracy and efficiency. The review outlines the evolution of U-Net architectures, their clinical integration, and offers a modality-wise comparison. It also addresses challenges such as data heterogeneity, limited generalizability, and model interpretability, proposing solutions including attention mechanisms and Transformer-based designs. Emphasizing clinical applicability, this work bridges the gap between algorithmic development and real-world implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信