人造肉的工程仿生支架

Lanlan Zhang , Yixuan Shang , Jingjing Gan , Zhuhao Wu , Yuanjin Zhao
{"title":"人造肉的工程仿生支架","authors":"Lanlan Zhang ,&nbsp;Yixuan Shang ,&nbsp;Jingjing Gan ,&nbsp;Zhuhao Wu ,&nbsp;Yuanjin Zhao","doi":"10.1016/j.bmt.2025.100113","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of cultivated meat has attracted much attention as a revolutionary product for meat. Biomaterial scaffolds are the key component and have been extensively studied in cultivated meat production, enabling cell adhesion, proliferation, and directed differentiation. However, the structural and mechanical biomimicry of edible scaffolds is hard to be achieved, hindering the large-scale production of cultivated meats. In this paper, we comprehensively summarize the construction of cultivated meat from cell-laden biomimetic scaffolds and its future research directions. We describe the cellular components of cultivated meat composition and their culture medium components. To tailor more edible scaffolds for high-efficient production of cultivated meats, advanced techniques including 3D bioprinting, electrostatic spinning, and tissue molding techniques have been developed. We then discuss recent research advances in scaffolding materials that maintain the three-dimensional (3D) morphology of cultivated meats and bioreactors. Next, we discussed the conditions and problems that should be solved for the industrial production of cultivated meat. Finally, we outline current challenges in the development of cultivated meat and a prospective outlook for the future of cultivated meat. We anticipate that the continued development of cultivated meat will lead to significant advances in the food and medical fields.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"12 ","pages":"Article 100113"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering biomimetic scaffolds for cultivated meats\",\"authors\":\"Lanlan Zhang ,&nbsp;Yixuan Shang ,&nbsp;Jingjing Gan ,&nbsp;Zhuhao Wu ,&nbsp;Yuanjin Zhao\",\"doi\":\"10.1016/j.bmt.2025.100113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The emergence of cultivated meat has attracted much attention as a revolutionary product for meat. Biomaterial scaffolds are the key component and have been extensively studied in cultivated meat production, enabling cell adhesion, proliferation, and directed differentiation. However, the structural and mechanical biomimicry of edible scaffolds is hard to be achieved, hindering the large-scale production of cultivated meats. In this paper, we comprehensively summarize the construction of cultivated meat from cell-laden biomimetic scaffolds and its future research directions. We describe the cellular components of cultivated meat composition and their culture medium components. To tailor more edible scaffolds for high-efficient production of cultivated meats, advanced techniques including 3D bioprinting, electrostatic spinning, and tissue molding techniques have been developed. We then discuss recent research advances in scaffolding materials that maintain the three-dimensional (3D) morphology of cultivated meats and bioreactors. Next, we discussed the conditions and problems that should be solved for the industrial production of cultivated meat. Finally, we outline current challenges in the development of cultivated meat and a prospective outlook for the future of cultivated meat. We anticipate that the continued development of cultivated meat will lead to significant advances in the food and medical fields.</div></div>\",\"PeriodicalId\":100180,\"journal\":{\"name\":\"Biomedical Technology\",\"volume\":\"12 \",\"pages\":\"Article 100113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949723X25000455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X25000455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人造肉作为一种革命性的肉类产品而备受关注。生物材料支架是培育肉类生产的关键组成部分,已被广泛研究,可实现细胞粘附、增殖和定向分化。然而,可食用支架的结构和力学仿生学难以实现,阻碍了养殖肉类的大规模生产。本文全面综述了载细胞仿生支架构建培养肉的研究进展及其未来的研究方向。我们描述了培养肉成分的细胞成分及其培养基成分。为了定制更多可食用的支架以高效生产养殖肉类,包括3D生物打印、静电纺丝和组织成型技术在内的先进技术已经开发出来。然后,我们讨论了维持养殖肉类和生物反应器的三维(3D)形态的支架材料的最新研究进展。接下来,我们讨论了养殖肉工业化生产需要解决的条件和问题。最后,我们概述了目前人造肉发展面临的挑战,并对人造肉的未来进行了展望。我们预计,养殖肉类的持续发展将导致食品和医疗领域的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering biomimetic scaffolds for cultivated meats
The emergence of cultivated meat has attracted much attention as a revolutionary product for meat. Biomaterial scaffolds are the key component and have been extensively studied in cultivated meat production, enabling cell adhesion, proliferation, and directed differentiation. However, the structural and mechanical biomimicry of edible scaffolds is hard to be achieved, hindering the large-scale production of cultivated meats. In this paper, we comprehensively summarize the construction of cultivated meat from cell-laden biomimetic scaffolds and its future research directions. We describe the cellular components of cultivated meat composition and their culture medium components. To tailor more edible scaffolds for high-efficient production of cultivated meats, advanced techniques including 3D bioprinting, electrostatic spinning, and tissue molding techniques have been developed. We then discuss recent research advances in scaffolding materials that maintain the three-dimensional (3D) morphology of cultivated meats and bioreactors. Next, we discussed the conditions and problems that should be solved for the industrial production of cultivated meat. Finally, we outline current challenges in the development of cultivated meat and a prospective outlook for the future of cultivated meat. We anticipate that the continued development of cultivated meat will lead to significant advances in the food and medical fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信