{"title":"具有间接排斥信号产生的吸引-排斥趋化系统的有界性","authors":"Wei Wang, Pan Zheng","doi":"10.1016/j.jmaa.2025.130087","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the following attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>ξ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><msup><mrow><mi>w</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> under homogeneous Neumann boundary conditions, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> is a smoothly bounded domain and <span><math><mi>ξ</mi><mo>,</mo><mi>χ</mi><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>.<ul><li><span>•</span><span><div>When <span><math><mi>f</mi><mo>≡</mo><mn>0</mn></math></span>, it is shown that the solution of the above system is global and uniformly bounded if <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. Moreover, if <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, the boundedness of solution can be derived provided that the initial mass <span><math><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span> is small.</div></span></li><li><span>•</span><span><div>When <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mi>u</mi><mo>(</mo><mi>a</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>k</mi><mo>></mo><mn>0</mn></math></span>, it is proved that if one of the following conditions holds: (i) <span><math><mi>k</mi><mo>></mo><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>, (ii) <span><math><mi>k</mi><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>, (iii) <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, then the solution is globally bounded in time provided that <em>b</em> is large enough.</div></span></li></ul></div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130087"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness in an attraction-repulsion chemotaxis system with indirect repulsion-signal production\",\"authors\":\"Wei Wang, Pan Zheng\",\"doi\":\"10.1016/j.jmaa.2025.130087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the following attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>ξ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><msup><mrow><mi>w</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> under homogeneous Neumann boundary conditions, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> is a smoothly bounded domain and <span><math><mi>ξ</mi><mo>,</mo><mi>χ</mi><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>.<ul><li><span>•</span><span><div>When <span><math><mi>f</mi><mo>≡</mo><mn>0</mn></math></span>, it is shown that the solution of the above system is global and uniformly bounded if <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. Moreover, if <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, the boundedness of solution can be derived provided that the initial mass <span><math><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span> is small.</div></span></li><li><span>•</span><span><div>When <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mi>u</mi><mo>(</mo><mi>a</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>k</mi><mo>></mo><mn>0</mn></math></span>, it is proved that if one of the following conditions holds: (i) <span><math><mi>k</mi><mo>></mo><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>, (ii) <span><math><mi>k</mi><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>, (iii) <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, then the solution is globally bounded in time provided that <em>b</em> is large enough.</div></span></li></ul></div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"556 1\",\"pages\":\"Article 130087\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008686\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008686","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Boundedness in an attraction-repulsion chemotaxis system with indirect repulsion-signal production
This paper studies the following attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism under homogeneous Neumann boundary conditions, where is a smoothly bounded domain and .
•
When , it is shown that the solution of the above system is global and uniformly bounded if . Moreover, if , the boundedness of solution can be derived provided that the initial mass is small.
•
When with , it is proved that if one of the following conditions holds: (i) , (ii) , (iii) , then the solution is globally bounded in time provided that b is large enough.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.