具有间接排斥信号产生的吸引-排斥趋化系统的有界性

IF 1.2 3区 数学 Q1 MATHEMATICS
Wei Wang, Pan Zheng
{"title":"具有间接排斥信号产生的吸引-排斥趋化系统的有界性","authors":"Wei Wang,&nbsp;Pan Zheng","doi":"10.1016/j.jmaa.2025.130087","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the following attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>ξ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><msup><mrow><mi>w</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> under homogeneous Neumann boundary conditions, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> is a smoothly bounded domain and <span><math><mi>ξ</mi><mo>,</mo><mi>χ</mi><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>.<ul><li><span>•</span><span><div>When <span><math><mi>f</mi><mo>≡</mo><mn>0</mn></math></span>, it is shown that the solution of the above system is global and uniformly bounded if <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo>&lt;</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. Moreover, if <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, the boundedness of solution can be derived provided that the initial mass <span><math><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span> is small.</div></span></li><li><span>•</span><span><div>When <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mi>u</mi><mo>(</mo><mi>a</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>k</mi><mo>&gt;</mo><mn>0</mn></math></span>, it is proved that if one of the following conditions holds: (i) <span><math><mi>k</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>, (ii) <span><math><mi>k</mi><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>, (iii) <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo>&lt;</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, then the solution is globally bounded in time provided that <em>b</em> is large enough.</div></span></li></ul></div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130087"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness in an attraction-repulsion chemotaxis system with indirect repulsion-signal production\",\"authors\":\"Wei Wang,&nbsp;Pan Zheng\",\"doi\":\"10.1016/j.jmaa.2025.130087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the following attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>ξ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><msup><mrow><mi>w</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> under homogeneous Neumann boundary conditions, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> is a smoothly bounded domain and <span><math><mi>ξ</mi><mo>,</mo><mi>χ</mi><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>.<ul><li><span>•</span><span><div>When <span><math><mi>f</mi><mo>≡</mo><mn>0</mn></math></span>, it is shown that the solution of the above system is global and uniformly bounded if <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo>&lt;</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. Moreover, if <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, the boundedness of solution can be derived provided that the initial mass <span><math><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span> is small.</div></span></li><li><span>•</span><span><div>When <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mi>u</mi><mo>(</mo><mi>a</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>k</mi><mo>&gt;</mo><mn>0</mn></math></span>, it is proved that if one of the following conditions holds: (i) <span><math><mi>k</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>, (ii) <span><math><mi>k</mi><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>, (iii) <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo><mo>&lt;</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, then the solution is globally bounded in time provided that <em>b</em> is large enough.</div></span></li></ul></div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"556 1\",\"pages\":\"Article 130087\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008686\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008686","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究以下attraction-repulsion趋化作用系统涉及非线性间接信号机制{ut =Δu−ξ∇⋅(u∇v) +χ∇⋅(u∇z) + f (u), x∈Ω,t> 0, 0 =−Δv + uγ1,x∈Ω,t> 0, zt型=Δz−z + wγ2 x∈Ω,t> 0, 0 =Δw−w + uγ3 x∈Ω,t> 0,均匀诺伊曼边界条件下,在Ω⊂Rn (n≥1)顺利有限域和ξ,χ,γ1、γ2γ3在0。•当f≡0时,证明了max ({γ1,γ2γ3}<2n)的解是全局一致有界的。此外,当max (γ1,γ2γ3) =2n时,在初始质量∫Ωu0(x)dx较小的条件下,可以导出解的有界性。•当f(u)≤u(a−buk)且a,b,k>;0时,证明了如果满足下列条件之一:(i) k>max (γ1,γ2γ3), (ii) k=max (γ1,γ2γ3), (iii) max (γ1,γ2γ3) <2n,则当b足够大时,解在时间上是全局有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness in an attraction-repulsion chemotaxis system with indirect repulsion-signal production
This paper studies the following attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism{ut=Δuξ(uv)+χ(uz)+f(u),xΩ,t>0,0=Δvv+uγ1,xΩ,t>0,zt=Δzz+wγ2,xΩ,t>0,0=Δww+uγ3,xΩ,t>0, under homogeneous Neumann boundary conditions, where ΩRn(n1) is a smoothly bounded domain and ξ,χ,γ1,γ2,γ3>0.
  • When f0, it is shown that the solution of the above system is global and uniformly bounded if max{γ1,γ2γ3}<2n. Moreover, if max{γ1,γ2γ3}=2n, the boundedness of solution can be derived provided that the initial mass Ωu0(x)dx is small.
  • When f(u)u(abuk) with a,b,k>0, it is proved that if one of the following conditions holds: (i) k>max{γ1,γ2γ3}, (ii) k=max{γ1,γ2γ3}, (iii) max{γ1,γ2γ3}<2n, then the solution is globally bounded in time provided that b is large enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信