Benjamin Gundersen , Saikishore Kalloori , Abhishek Srivastava
{"title":"基于情感感知会话的新闻推荐系统","authors":"Benjamin Gundersen , Saikishore Kalloori , Abhishek Srivastava","doi":"10.1016/j.dss.2025.114540","DOIUrl":null,"url":null,"abstract":"<div><div>News recommender systems are decision support systems that exploit user-article interactions over a short duration of time to discover users’ interests and predict unseen news articles to generate a ranking of news articles that are relevant and interesting. In the news recommendation scenario, the relevance of articles decays quickly, and fresh articles are generated daily. Session based models are proposed using time-aware approaches to exploit interactions sequentially. Prior news recommender systems do not consider emotional information expressed in news articles within sessions for recommendations. Emotions play a key role in supporting decision-making and emotionally charged headlines can evoke curiosity or urgency, prompting users to click on certain articles. This paper presents an innovative decision support system for session based news recommendation, using expressed emotions from news articles, such as expressed in the title, abstract, and text, to improve user decision-making. We introduce a novel methodology that incorporates expressed emotions into three session based news recommendation models. Our results demonstrate that expressed emotion carries valuable information to improve session based news recommenders on various ranking metrics significantly and proved especially beneficial in scenarios with limited user interaction history, addressing the cold-start problem. The results show significant improvements in ranking metrics, emphasizing the utility of emotional features for dynamic decision-making support.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"198 ","pages":"Article 114540"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotion aware session based news recommender systems\",\"authors\":\"Benjamin Gundersen , Saikishore Kalloori , Abhishek Srivastava\",\"doi\":\"10.1016/j.dss.2025.114540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>News recommender systems are decision support systems that exploit user-article interactions over a short duration of time to discover users’ interests and predict unseen news articles to generate a ranking of news articles that are relevant and interesting. In the news recommendation scenario, the relevance of articles decays quickly, and fresh articles are generated daily. Session based models are proposed using time-aware approaches to exploit interactions sequentially. Prior news recommender systems do not consider emotional information expressed in news articles within sessions for recommendations. Emotions play a key role in supporting decision-making and emotionally charged headlines can evoke curiosity or urgency, prompting users to click on certain articles. This paper presents an innovative decision support system for session based news recommendation, using expressed emotions from news articles, such as expressed in the title, abstract, and text, to improve user decision-making. We introduce a novel methodology that incorporates expressed emotions into three session based news recommendation models. Our results demonstrate that expressed emotion carries valuable information to improve session based news recommenders on various ranking metrics significantly and proved especially beneficial in scenarios with limited user interaction history, addressing the cold-start problem. The results show significant improvements in ranking metrics, emphasizing the utility of emotional features for dynamic decision-making support.</div></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"198 \",\"pages\":\"Article 114540\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923625001411\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625001411","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Emotion aware session based news recommender systems
News recommender systems are decision support systems that exploit user-article interactions over a short duration of time to discover users’ interests and predict unseen news articles to generate a ranking of news articles that are relevant and interesting. In the news recommendation scenario, the relevance of articles decays quickly, and fresh articles are generated daily. Session based models are proposed using time-aware approaches to exploit interactions sequentially. Prior news recommender systems do not consider emotional information expressed in news articles within sessions for recommendations. Emotions play a key role in supporting decision-making and emotionally charged headlines can evoke curiosity or urgency, prompting users to click on certain articles. This paper presents an innovative decision support system for session based news recommendation, using expressed emotions from news articles, such as expressed in the title, abstract, and text, to improve user decision-making. We introduce a novel methodology that incorporates expressed emotions into three session based news recommendation models. Our results demonstrate that expressed emotion carries valuable information to improve session based news recommenders on various ranking metrics significantly and proved especially beneficial in scenarios with limited user interaction history, addressing the cold-start problem. The results show significant improvements in ranking metrics, emphasizing the utility of emotional features for dynamic decision-making support.
期刊介绍:
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).