基于交易数据的去中心化交易的Rug pull检测

IF 5.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Suparat Srifa , Yury Yanovich , Robert Vasilyev , Tharuka Rupasinghe , Vladislav Amelin
{"title":"基于交易数据的去中心化交易的Rug pull检测","authors":"Suparat Srifa ,&nbsp;Yury Yanovich ,&nbsp;Robert Vasilyev ,&nbsp;Tharuka Rupasinghe ,&nbsp;Vladislav Amelin","doi":"10.1016/j.bcra.2025.100275","DOIUrl":null,"url":null,"abstract":"<div><div>Cryptocurrency has transformed finance and investment, with platforms like Uniswap facilitating billions of dollars in trades. However, malicious smart contracts and scam tokens have led to significant financial losses for decentralized finance (DeFi) users. Code analysis alone cannot detect rug pulls using social engineering tactics. To address this issue, machine learning algorithms can leverage the vast amount of transactional data stored on the blockchain, particularly time series data, to identify scam tokens. This study aims to determine the optimal timeframe for detecting rug pulls and highlights the importance of token volume and transaction count features. The findings suggest that shorter timeframes are sufficient for detecting rug pull tokens since most incidents occur soon after token creation. This research offers new insights into scam token classification and prevention and contributes to a broader understanding of this field.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 3","pages":"Article 100275"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rug pull detection on decentralized exchange using transaction data\",\"authors\":\"Suparat Srifa ,&nbsp;Yury Yanovich ,&nbsp;Robert Vasilyev ,&nbsp;Tharuka Rupasinghe ,&nbsp;Vladislav Amelin\",\"doi\":\"10.1016/j.bcra.2025.100275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cryptocurrency has transformed finance and investment, with platforms like Uniswap facilitating billions of dollars in trades. However, malicious smart contracts and scam tokens have led to significant financial losses for decentralized finance (DeFi) users. Code analysis alone cannot detect rug pulls using social engineering tactics. To address this issue, machine learning algorithms can leverage the vast amount of transactional data stored on the blockchain, particularly time series data, to identify scam tokens. This study aims to determine the optimal timeframe for detecting rug pulls and highlights the importance of token volume and transaction count features. The findings suggest that shorter timeframes are sufficient for detecting rug pull tokens since most incidents occur soon after token creation. This research offers new insights into scam token classification and prevention and contributes to a broader understanding of this field.</div></div>\",\"PeriodicalId\":53141,\"journal\":{\"name\":\"Blockchain-Research and Applications\",\"volume\":\"6 3\",\"pages\":\"Article 100275\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blockchain-Research and Applications\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096720925000028\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720925000028","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

加密货币已经改变了金融和投资,像Uniswap这样的平台促成了数十亿美元的交易。然而,恶意智能合约和诈骗代币给去中心化金融(DeFi)用户带来了重大的经济损失。仅靠代码分析无法发现使用社会工程策略的作弊行为。为了解决这个问题,机器学习算法可以利用存储在区块链上的大量事务数据,特别是时间序列数据,来识别诈骗令牌。本研究旨在确定检测rug pull的最佳时间框架,并强调令牌数量和交易计数特征的重要性。研究结果表明,较短的时间范围足以检测rug pull令牌,因为大多数事件发生在令牌创建后不久。这项研究为诈骗令牌分类和预防提供了新的见解,并有助于更广泛地了解这一领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rug pull detection on decentralized exchange using transaction data
Cryptocurrency has transformed finance and investment, with platforms like Uniswap facilitating billions of dollars in trades. However, malicious smart contracts and scam tokens have led to significant financial losses for decentralized finance (DeFi) users. Code analysis alone cannot detect rug pulls using social engineering tactics. To address this issue, machine learning algorithms can leverage the vast amount of transactional data stored on the blockchain, particularly time series data, to identify scam tokens. This study aims to determine the optimal timeframe for detecting rug pulls and highlights the importance of token volume and transaction count features. The findings suggest that shorter timeframes are sufficient for detecting rug pull tokens since most incidents occur soon after token creation. This research offers new insights into scam token classification and prevention and contributes to a broader understanding of this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.60%
发文量
0
期刊介绍: Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信