趋化性中的一个分数阶半线性Neumann问题

IF 2.3 2区 数学 Q1 MATHEMATICS
Eleonora Cinti, Matteo Talluri
{"title":"趋化性中的一个分数阶半线性Neumann问题","authors":"Eleonora Cinti,&nbsp;Matteo Talluri","doi":"10.1016/j.jde.2025.113779","DOIUrl":null,"url":null,"abstract":"<div><div>We study a semilinear and nonlocal Neumann problem, which is the fractional analogue of the problem considered by Lin–Ni–Takagi in the '80s. The model under consideration arises in the description of stationary configurations of the Keller–Segel model for chemotaxis, when a nonlocal diffusion for the concentration of the chemical is considered. In particular, we extend to any fractional power <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> of the Laplacian (with homogeneous Neumann boundary conditions) the results obtained in <span><span>[23]</span></span> for <span><math><mi>s</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. We prove existence and some qualitative properties of non–constant solutions when the diffusion parameter <em>ε</em> is small enough, and on the other hand, we show that for <em>ε</em> large enough any solution must be necessarily constant.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"452 ","pages":"Article 113779"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a fractional semilinear Neumann problem arising in Chemotaxis\",\"authors\":\"Eleonora Cinti,&nbsp;Matteo Talluri\",\"doi\":\"10.1016/j.jde.2025.113779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study a semilinear and nonlocal Neumann problem, which is the fractional analogue of the problem considered by Lin–Ni–Takagi in the '80s. The model under consideration arises in the description of stationary configurations of the Keller–Segel model for chemotaxis, when a nonlocal diffusion for the concentration of the chemical is considered. In particular, we extend to any fractional power <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> of the Laplacian (with homogeneous Neumann boundary conditions) the results obtained in <span><span>[23]</span></span> for <span><math><mi>s</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. We prove existence and some qualitative properties of non–constant solutions when the diffusion parameter <em>ε</em> is small enough, and on the other hand, we show that for <em>ε</em> large enough any solution must be necessarily constant.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"452 \",\"pages\":\"Article 113779\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500806X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500806X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个半线性和非局部的Neumann问题,它是Lin-Ni-Takagi在80年代考虑的问题的分数模拟。当考虑化学物质浓度的非局部扩散时,所考虑的模型出现在描述趋化性的Keller-Segel模型的固定构型中。特别地,我们将[23]中对于s=1/2的拉普拉斯方程(具有齐次Neumann边界条件)的结果推广到s∈(0,1)的任意分数次幂。一方面证明了扩散参数ε足够小时非常解的存在性和一些定性性质,另一方面证明了ε足够大时任何解必然是常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a fractional semilinear Neumann problem arising in Chemotaxis
We study a semilinear and nonlocal Neumann problem, which is the fractional analogue of the problem considered by Lin–Ni–Takagi in the '80s. The model under consideration arises in the description of stationary configurations of the Keller–Segel model for chemotaxis, when a nonlocal diffusion for the concentration of the chemical is considered. In particular, we extend to any fractional power s(0,1) of the Laplacian (with homogeneous Neumann boundary conditions) the results obtained in [23] for s=1/2. We prove existence and some qualitative properties of non–constant solutions when the diffusion parameter ε is small enough, and on the other hand, we show that for ε large enough any solution must be necessarily constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信