验证基于web3的分散式清洁能源网络的边缘LLM发电

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shan Jiang , Wenchang Chai , Mingjin Zhang , Jiannong Cao , Shichang Xuan , Jiaxing Shen
{"title":"验证基于web3的分散式清洁能源网络的边缘LLM发电","authors":"Shan Jiang ,&nbsp;Wenchang Chai ,&nbsp;Mingjin Zhang ,&nbsp;Jiannong Cao ,&nbsp;Shichang Xuan ,&nbsp;Jiaxing Shen","doi":"10.1016/j.inffus.2025.103752","DOIUrl":null,"url":null,"abstract":"<div><div>The global transition to clean energy is critical to achieving climate goals, yet traditional centralized systems face challenges in flexibility, grid resilience, and equitable access. While decentralized web3-based energy networks offer promising alternatives, existing solutions lack robust architectures to integrate distributed generation with real-time demand and fail to provide trustworthy energy verification mechanisms. This work introduces DeCEN, a decentralized clean energy network that synergizes collaborative edge computing and web3 technologies to address these gaps. DeCEN leverages autonomous edge devices to collect and process sensory data from renewable generators, enabling localized decision-making and verification of energy production. A layer-2 blockchain solution establishes a transparent web3 ecosystem, connecting clean energy generators and consumers through tokenized incentives for green energy activities. To combat fraud, DeCEN incorporates a novel large language model (LLM)-based energy verification protocol that analyzes sensory data to validate renewable claims, ensuring accountability and stabilizing token value. Additionally, a distributed LLM inference algorithm partitions LLMs into shards deployable on resource-constrained edge devices, enabling decentralized, low-latency processing while preserving data privacy and minimizing communication overhead. By integrating edge computing, blockchain, and AI-driven verification, DeCEN improves the reliability, trust, and efficiency of decentralized clean energy networks, offering a scalable pathway toward global renewable energy targets.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103752"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verifying energy generation via edge LLM for web3-based decentralized clean energy networks\",\"authors\":\"Shan Jiang ,&nbsp;Wenchang Chai ,&nbsp;Mingjin Zhang ,&nbsp;Jiannong Cao ,&nbsp;Shichang Xuan ,&nbsp;Jiaxing Shen\",\"doi\":\"10.1016/j.inffus.2025.103752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global transition to clean energy is critical to achieving climate goals, yet traditional centralized systems face challenges in flexibility, grid resilience, and equitable access. While decentralized web3-based energy networks offer promising alternatives, existing solutions lack robust architectures to integrate distributed generation with real-time demand and fail to provide trustworthy energy verification mechanisms. This work introduces DeCEN, a decentralized clean energy network that synergizes collaborative edge computing and web3 technologies to address these gaps. DeCEN leverages autonomous edge devices to collect and process sensory data from renewable generators, enabling localized decision-making and verification of energy production. A layer-2 blockchain solution establishes a transparent web3 ecosystem, connecting clean energy generators and consumers through tokenized incentives for green energy activities. To combat fraud, DeCEN incorporates a novel large language model (LLM)-based energy verification protocol that analyzes sensory data to validate renewable claims, ensuring accountability and stabilizing token value. Additionally, a distributed LLM inference algorithm partitions LLMs into shards deployable on resource-constrained edge devices, enabling decentralized, low-latency processing while preserving data privacy and minimizing communication overhead. By integrating edge computing, blockchain, and AI-driven verification, DeCEN improves the reliability, trust, and efficiency of decentralized clean energy networks, offering a scalable pathway toward global renewable energy targets.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"127 \",\"pages\":\"Article 103752\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525008140\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525008140","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

全球向清洁能源的过渡对实现气候目标至关重要,但传统的集中式系统在灵活性、电网弹性和公平接入方面面临挑战。虽然基于web3的去中心化能源网络提供了有希望的替代方案,但现有的解决方案缺乏强大的架构,无法将分布式发电与实时需求集成在一起,也无法提供可靠的能源验证机制。这项工作介绍了DeCEN,这是一个分散的清洁能源网络,可以协同协作边缘计算和web3技术来解决这些差距。DeCEN利用自主边缘设备收集和处理来自可再生能源发电机的传感数据,从而实现能源生产的本地化决策和验证。二层区块链解决方案建立了一个透明的web3生态系统,通过代币化的绿色能源活动激励机制将清洁能源发电商和消费者联系起来。为了打击欺诈,DeCEN采用了一种新颖的基于大型语言模型(LLM)的能源验证协议,该协议分析感官数据以验证可再生索赔,确保问责制和稳定代币价值。此外,分布式LLM推理算法将LLM划分为可部署在资源受限的边缘设备上的分片,从而实现分散、低延迟的处理,同时保护数据隐私并最大限度地减少通信开销。通过集成边缘计算、区块链和人工智能驱动的验证,DeCEN提高了分散式清洁能源网络的可靠性、信任度和效率,为实现全球可再生能源目标提供了一条可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verifying energy generation via edge LLM for web3-based decentralized clean energy networks
The global transition to clean energy is critical to achieving climate goals, yet traditional centralized systems face challenges in flexibility, grid resilience, and equitable access. While decentralized web3-based energy networks offer promising alternatives, existing solutions lack robust architectures to integrate distributed generation with real-time demand and fail to provide trustworthy energy verification mechanisms. This work introduces DeCEN, a decentralized clean energy network that synergizes collaborative edge computing and web3 technologies to address these gaps. DeCEN leverages autonomous edge devices to collect and process sensory data from renewable generators, enabling localized decision-making and verification of energy production. A layer-2 blockchain solution establishes a transparent web3 ecosystem, connecting clean energy generators and consumers through tokenized incentives for green energy activities. To combat fraud, DeCEN incorporates a novel large language model (LLM)-based energy verification protocol that analyzes sensory data to validate renewable claims, ensuring accountability and stabilizing token value. Additionally, a distributed LLM inference algorithm partitions LLMs into shards deployable on resource-constrained edge devices, enabling decentralized, low-latency processing while preserving data privacy and minimizing communication overhead. By integrating edge computing, blockchain, and AI-driven verification, DeCEN improves the reliability, trust, and efficiency of decentralized clean energy networks, offering a scalable pathway toward global renewable energy targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信