PTFusion:用于web渗透测试的llm驱动的上下文感知知识融合

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenhao Wang , Hao Gu , Zhixuan Wu , Hao Chen , Xingguo Chen , Fan Shi
{"title":"PTFusion:用于web渗透测试的llm驱动的上下文感知知识融合","authors":"Wenhao Wang ,&nbsp;Hao Gu ,&nbsp;Zhixuan Wu ,&nbsp;Hao Chen ,&nbsp;Xingguo Chen ,&nbsp;Fan Shi","doi":"10.1016/j.inffus.2025.103731","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents PTFusion, an LLM-driven web penetration testing framework that addresses inefficient task guidance and imprecise command execution challenges in web penetration testing. Employing a semi-decentralized multi-agent collaborative architecture, PTFusion maintains strategic coherence while enabling autonomous tactical execution, and uses the Model Context Protocol to more conveniently call different types of penetration testing tools. To effectively guide task execution, the PTFusion designs a context-aware knowledge fusion mechanism to plan tasks based on the dynamic knowledge graph and executed actions, and uses the preference-based chain-of-thought prompting to address the issue of redundant and difficult to align outputs from different types of penetration testing tools. Compared to methods like PentestGPT, PTFusion demonstrates significantl superior performance in both task completion effectiveness and stability. The context-aware knowledge fusion mechanism enables PTFusion to conduct more precise strategic planning and execute penetration testing commands with greater accuracy, ensuring reliable completion of web penetration testing tasks across various scenarios.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103731"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PTFusion: LLM-driven context-aware knowledge fusion for web penetration testing\",\"authors\":\"Wenhao Wang ,&nbsp;Hao Gu ,&nbsp;Zhixuan Wu ,&nbsp;Hao Chen ,&nbsp;Xingguo Chen ,&nbsp;Fan Shi\",\"doi\":\"10.1016/j.inffus.2025.103731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents PTFusion, an LLM-driven web penetration testing framework that addresses inefficient task guidance and imprecise command execution challenges in web penetration testing. Employing a semi-decentralized multi-agent collaborative architecture, PTFusion maintains strategic coherence while enabling autonomous tactical execution, and uses the Model Context Protocol to more conveniently call different types of penetration testing tools. To effectively guide task execution, the PTFusion designs a context-aware knowledge fusion mechanism to plan tasks based on the dynamic knowledge graph and executed actions, and uses the preference-based chain-of-thought prompting to address the issue of redundant and difficult to align outputs from different types of penetration testing tools. Compared to methods like PentestGPT, PTFusion demonstrates significantl superior performance in both task completion effectiveness and stability. The context-aware knowledge fusion mechanism enables PTFusion to conduct more precise strategic planning and execute penetration testing commands with greater accuracy, ensuring reliable completion of web penetration testing tasks across various scenarios.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"127 \",\"pages\":\"Article 103731\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525007936\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525007936","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了PTFusion,一个llm驱动的web渗透测试框架,解决了web渗透测试中低效的任务指导和不精确的命令执行挑战。PTFusion采用半分散的多代理协作架构,在保持战略一致性的同时实现自主战术执行,并使用模型上下文协议更方便地调用不同类型的渗透测试工具。为了有效地指导任务执行,PTFusion设计了一种基于上下文感知的知识融合机制,基于动态知识图和执行动作来规划任务,并使用基于偏好的思维链提示来解决不同类型渗透测试工具输出冗余和难以对齐的问题。与PentestGPT等方法相比,PTFusion在任务完成效率和稳定性方面都表现出明显的优势。上下文感知的知识融合机制使PTFusion能够进行更精确的战略规划,并以更高的精度执行渗透测试命令,确保在各种场景下可靠地完成web渗透测试任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PTFusion: LLM-driven context-aware knowledge fusion for web penetration testing
This paper presents PTFusion, an LLM-driven web penetration testing framework that addresses inefficient task guidance and imprecise command execution challenges in web penetration testing. Employing a semi-decentralized multi-agent collaborative architecture, PTFusion maintains strategic coherence while enabling autonomous tactical execution, and uses the Model Context Protocol to more conveniently call different types of penetration testing tools. To effectively guide task execution, the PTFusion designs a context-aware knowledge fusion mechanism to plan tasks based on the dynamic knowledge graph and executed actions, and uses the preference-based chain-of-thought prompting to address the issue of redundant and difficult to align outputs from different types of penetration testing tools. Compared to methods like PentestGPT, PTFusion demonstrates significantl superior performance in both task completion effectiveness and stability. The context-aware knowledge fusion mechanism enables PTFusion to conduct more precise strategic planning and execute penetration testing commands with greater accuracy, ensuring reliable completion of web penetration testing tasks across various scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信