在子函数域上

IF 0.8 2区 数学 Q2 MATHEMATICS
Shashikant Mulay
{"title":"在子函数域上","authors":"Shashikant Mulay","doi":"10.1016/j.jalgebra.2025.08.033","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>K</em> be a function field with ground field <em>k</em>. A well known theorem of Jack Ohm proves that if <em>k</em> is infinite and <em>K</em> is separably subruled over <em>k</em>, then <em>K</em> is separably uniruled over <em>k</em>. At the end of his proof of this important result, Ohm asks if his theorem remains valid in the case of a finite ground field <em>k</em>. In this article we present an alternative proof of Ohm's theorem that is valid for all ground field <em>k</em>, finite or infinite, thereby answering Ohm's question.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 345-351"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On subruled function fields\",\"authors\":\"Shashikant Mulay\",\"doi\":\"10.1016/j.jalgebra.2025.08.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>K</em> be a function field with ground field <em>k</em>. A well known theorem of Jack Ohm proves that if <em>k</em> is infinite and <em>K</em> is separably subruled over <em>k</em>, then <em>K</em> is separably uniruled over <em>k</em>. At the end of his proof of this important result, Ohm asks if his theorem remains valid in the case of a finite ground field <em>k</em>. In this article we present an alternative proof of Ohm's theorem that is valid for all ground field <em>k</em>, finite or infinite, thereby answering Ohm's question.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 345-351\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005198\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005198","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让K场与地面场函数K。一个众所周知的杰克欧姆定理证明,如果K是无限和K可分离地子规则/ K, K是可分离地天/ K。最后他证明这一重要结果,欧姆问他的定理在有限的情况下仍然有效地现场K。在本文中,我们提出一个替代欧姆定理的证明,有效期为所有基域K,有限或无限,从而回答欧姆的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On subruled function fields
Let K be a function field with ground field k. A well known theorem of Jack Ohm proves that if k is infinite and K is separably subruled over k, then K is separably uniruled over k. At the end of his proof of this important result, Ohm asks if his theorem remains valid in the case of a finite ground field k. In this article we present an alternative proof of Ohm's theorem that is valid for all ground field k, finite or infinite, thereby answering Ohm's question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信