{"title":"关于非全等数作为非全等数的倍数","authors":"Shenxing Zhang","doi":"10.1016/j.jalgebra.2025.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>n</mi><mo>=</mo><mi>P</mi><mi>Q</mi></math></span> be a square-free positive integer, where <em>P</em> is a product of primes congruent to <span><math><mn>1</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>8</mn></math></span>, and <em>Q</em> is a non-congruent number with a trivial 2-primary Shafarevich-Tate group. Under certain conditions on the Legendre symbols <span><math><mo>(</mo><mfrac><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>)</mo></math></span> for primes <span><math><mi>p</mi><mo>|</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>|</mo><mi>Q</mi></math></span>, we establish a criterion characterizing when <em>n</em> is non-congruent with a minimal or a second minimal 2-primary Shafarevich-Tate group. We also provide a sufficient condition for <em>n</em> to be non-congruent with a larger 2-primary Shafarevich-Tate group. These results involve the class groups and tame kernels of quadratic fields.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 394-418"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On non-congruent numbers as multiples of non-congruent numbers\",\"authors\":\"Shenxing Zhang\",\"doi\":\"10.1016/j.jalgebra.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>n</mi><mo>=</mo><mi>P</mi><mi>Q</mi></math></span> be a square-free positive integer, where <em>P</em> is a product of primes congruent to <span><math><mn>1</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>8</mn></math></span>, and <em>Q</em> is a non-congruent number with a trivial 2-primary Shafarevich-Tate group. Under certain conditions on the Legendre symbols <span><math><mo>(</mo><mfrac><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>)</mo></math></span> for primes <span><math><mi>p</mi><mo>|</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>|</mo><mi>Q</mi></math></span>, we establish a criterion characterizing when <em>n</em> is non-congruent with a minimal or a second minimal 2-primary Shafarevich-Tate group. We also provide a sufficient condition for <em>n</em> to be non-congruent with a larger 2-primary Shafarevich-Tate group. These results involve the class groups and tame kernels of quadratic fields.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 394-418\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005319\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005319","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On non-congruent numbers as multiples of non-congruent numbers
Let be a square-free positive integer, where P is a product of primes congruent to , and Q is a non-congruent number with a trivial 2-primary Shafarevich-Tate group. Under certain conditions on the Legendre symbols for primes , we establish a criterion characterizing when n is non-congruent with a minimal or a second minimal 2-primary Shafarevich-Tate group. We also provide a sufficient condition for n to be non-congruent with a larger 2-primary Shafarevich-Tate group. These results involve the class groups and tame kernels of quadratic fields.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.