仿射Gorenstein环面对的变形

IF 0.8 2区 数学 Q2 MATHEMATICS
Matej Filip
{"title":"仿射Gorenstein环面对的变形","authors":"Matej Filip","doi":"10.1016/j.jalgebra.2025.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>We consider deformations of a pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>)</mo></math></span>, where <em>X</em> is an affine toric Gorenstein variety and ∂<em>X</em> is its boundary. We compute the tangent and obstruction space for the corresponding deformation functor and for an admissible lattice degree <em>m</em> we construct the miniversal deformation of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>)</mo></math></span> in degrees <span><math><mo>−</mo><mi>k</mi><mi>m</mi></math></span>, for all <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. This in particular generalizes Altmann's construction of the miniversal deformation of an isolated Gorenstein toric singularity to an arbitrary non-isolated Gorenstein toric singularity. Moreover, we show that the irreducible components of the reduced miniversal deformation are in one to one correspondence with maximal Minkowski decompositions of the polytope <span><math><mi>P</mi><mo>∩</mo><mo>(</mo><mi>m</mi><mo>=</mo><mn>1</mn><mo>)</mo></math></span>, where <em>P</em> is the lattice polytope defining <em>X</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 419-445"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformations of an affine Gorenstein toric pair\",\"authors\":\"Matej Filip\",\"doi\":\"10.1016/j.jalgebra.2025.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider deformations of a pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>)</mo></math></span>, where <em>X</em> is an affine toric Gorenstein variety and ∂<em>X</em> is its boundary. We compute the tangent and obstruction space for the corresponding deformation functor and for an admissible lattice degree <em>m</em> we construct the miniversal deformation of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>)</mo></math></span> in degrees <span><math><mo>−</mo><mi>k</mi><mi>m</mi></math></span>, for all <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. This in particular generalizes Altmann's construction of the miniversal deformation of an isolated Gorenstein toric singularity to an arbitrary non-isolated Gorenstein toric singularity. Moreover, we show that the irreducible components of the reduced miniversal deformation are in one to one correspondence with maximal Minkowski decompositions of the polytope <span><math><mi>P</mi><mo>∩</mo><mo>(</mo><mi>m</mi><mo>=</mo><mn>1</mn><mo>)</mo></math></span>, where <em>P</em> is the lattice polytope defining <em>X</em>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 419-445\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005320\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005320","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一对(X,∂X)的变形,其中X是仿射环形Gorenstein变体,∂X是它的边界。对于所有k∈N,我们计算相应的变形函数的切线和阻塞空间,并且对于允许的格度m,我们构造了(X,∂X)在度−km中的通用变形。这特别地将Altmann关于孤立戈伦斯坦环奇点普遍变形的构造推广到任意非孤立戈伦斯坦环奇点。此外,我们证明了一般化变形的不可约分量与多面体P∩(m=1)的极大Minkowski分解一一对应,其中P是定义X的晶格多面体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformations of an affine Gorenstein toric pair
We consider deformations of a pair (X,X), where X is an affine toric Gorenstein variety and ∂X is its boundary. We compute the tangent and obstruction space for the corresponding deformation functor and for an admissible lattice degree m we construct the miniversal deformation of (X,X) in degrees km, for all kN. This in particular generalizes Altmann's construction of the miniversal deformation of an isolated Gorenstein toric singularity to an arbitrary non-isolated Gorenstein toric singularity. Moreover, we show that the irreducible components of the reduced miniversal deformation are in one to one correspondence with maximal Minkowski decompositions of the polytope P(m=1), where P is the lattice polytope defining X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信