{"title":"仿射Gorenstein环面对的变形","authors":"Matej Filip","doi":"10.1016/j.jalgebra.2025.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>We consider deformations of a pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>)</mo></math></span>, where <em>X</em> is an affine toric Gorenstein variety and ∂<em>X</em> is its boundary. We compute the tangent and obstruction space for the corresponding deformation functor and for an admissible lattice degree <em>m</em> we construct the miniversal deformation of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>)</mo></math></span> in degrees <span><math><mo>−</mo><mi>k</mi><mi>m</mi></math></span>, for all <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. This in particular generalizes Altmann's construction of the miniversal deformation of an isolated Gorenstein toric singularity to an arbitrary non-isolated Gorenstein toric singularity. Moreover, we show that the irreducible components of the reduced miniversal deformation are in one to one correspondence with maximal Minkowski decompositions of the polytope <span><math><mi>P</mi><mo>∩</mo><mo>(</mo><mi>m</mi><mo>=</mo><mn>1</mn><mo>)</mo></math></span>, where <em>P</em> is the lattice polytope defining <em>X</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 419-445"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformations of an affine Gorenstein toric pair\",\"authors\":\"Matej Filip\",\"doi\":\"10.1016/j.jalgebra.2025.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider deformations of a pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>)</mo></math></span>, where <em>X</em> is an affine toric Gorenstein variety and ∂<em>X</em> is its boundary. We compute the tangent and obstruction space for the corresponding deformation functor and for an admissible lattice degree <em>m</em> we construct the miniversal deformation of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>)</mo></math></span> in degrees <span><math><mo>−</mo><mi>k</mi><mi>m</mi></math></span>, for all <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. This in particular generalizes Altmann's construction of the miniversal deformation of an isolated Gorenstein toric singularity to an arbitrary non-isolated Gorenstein toric singularity. Moreover, we show that the irreducible components of the reduced miniversal deformation are in one to one correspondence with maximal Minkowski decompositions of the polytope <span><math><mi>P</mi><mo>∩</mo><mo>(</mo><mi>m</mi><mo>=</mo><mn>1</mn><mo>)</mo></math></span>, where <em>P</em> is the lattice polytope defining <em>X</em>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 419-445\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005320\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005320","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider deformations of a pair , where X is an affine toric Gorenstein variety and ∂X is its boundary. We compute the tangent and obstruction space for the corresponding deformation functor and for an admissible lattice degree m we construct the miniversal deformation of in degrees , for all . This in particular generalizes Altmann's construction of the miniversal deformation of an isolated Gorenstein toric singularity to an arbitrary non-isolated Gorenstein toric singularity. Moreover, we show that the irreducible components of the reduced miniversal deformation are in one to one correspondence with maximal Minkowski decompositions of the polytope , where P is the lattice polytope defining X.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.