气管造口气管雾化给药的数值模拟

IF 2.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Monica Gumulya , Natalie V.E. Anderson , Ryan Mead-Hunter , Britta S. von Ungern-Sternberg , Benjamin J. Mullins
{"title":"气管造口气管雾化给药的数值模拟","authors":"Monica Gumulya ,&nbsp;Natalie V.E. Anderson ,&nbsp;Ryan Mead-Hunter ,&nbsp;Britta S. von Ungern-Sternberg ,&nbsp;Benjamin J. Mullins","doi":"10.1016/j.jaerosci.2025.106694","DOIUrl":null,"url":null,"abstract":"<div><div>The administration of inhaled antibiotics to patients with upper or lower respiratory infections is sometimes conducted via a tracheostomy airway. However, precise dosing via this route remains uncertain, especially in spontaneously breathing paediatric patients. This study uses computational fluid dynamics (CFD) to explore the delivery of aerosolised medicine through an idealised tracheostomy tube, focussing on how droplet size distribution (polydispersity) and breathing flow conditions affect drug delivery efficiency. Unlike previous studies that incorporate elongated inlet and outlet sections to minimise flow disturbances, this work considers the compact geometry of tracheostomy tubes, demonstrating an earlier vortex formation around the inlet, resulting in an increased droplet deposition along the outer wall, closer to the inlet. As a result, the transfer efficiency, <span><math><mrow><mi>η</mi></mrow></math></span> (i.e. mass percentage of particles exiting the tracheostomy tube relative to the inlet rate), which decreases with increasing velocity, is found to be lower than those shown in other studies of 90° pipes. This efficiency further decreases with increased polydispersity of the inlet particles. The proportion of respirable droplets in the outlet stream is strongly influenced by the Mass Median Diameter (MMD) of the inlet. When the inlet MMD is 3.5 μm, the net transfer efficiency of respirable droplets, <span><math><mrow><msub><mi>η</mi><mrow><mi>r</mi><mi>e</mi><mi>s</mi><mi>p</mi><mi>i</mi><mi>r</mi><mi>a</mi><mi>b</mi><mi>l</mi><mi>e</mi></mrow></msub></mrow></math></span>, is 50.3 %, with minimal variation across flow conditions. A lower inlet MMD of 2.2 μm yields higher <span><math><mrow><msub><mi>η</mi><mrow><mi>r</mi><mi>e</mi><mi>s</mi><mi>p</mi><mi>i</mi><mi>r</mi><mi>a</mi><mi>b</mi><mi>l</mi><mi>e</mi></mrow></msub></mrow></math></span> values (64.9–87.7 %), although with greater sensitivity to flow and polydispersity. These findings offer new insights into optimising aerosol drug delivery through tracheostomy airways.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"191 ","pages":"Article 106694"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of aerosolised medicine delivery through tracheostomy airways\",\"authors\":\"Monica Gumulya ,&nbsp;Natalie V.E. Anderson ,&nbsp;Ryan Mead-Hunter ,&nbsp;Britta S. von Ungern-Sternberg ,&nbsp;Benjamin J. Mullins\",\"doi\":\"10.1016/j.jaerosci.2025.106694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The administration of inhaled antibiotics to patients with upper or lower respiratory infections is sometimes conducted via a tracheostomy airway. However, precise dosing via this route remains uncertain, especially in spontaneously breathing paediatric patients. This study uses computational fluid dynamics (CFD) to explore the delivery of aerosolised medicine through an idealised tracheostomy tube, focussing on how droplet size distribution (polydispersity) and breathing flow conditions affect drug delivery efficiency. Unlike previous studies that incorporate elongated inlet and outlet sections to minimise flow disturbances, this work considers the compact geometry of tracheostomy tubes, demonstrating an earlier vortex formation around the inlet, resulting in an increased droplet deposition along the outer wall, closer to the inlet. As a result, the transfer efficiency, <span><math><mrow><mi>η</mi></mrow></math></span> (i.e. mass percentage of particles exiting the tracheostomy tube relative to the inlet rate), which decreases with increasing velocity, is found to be lower than those shown in other studies of 90° pipes. This efficiency further decreases with increased polydispersity of the inlet particles. The proportion of respirable droplets in the outlet stream is strongly influenced by the Mass Median Diameter (MMD) of the inlet. When the inlet MMD is 3.5 μm, the net transfer efficiency of respirable droplets, <span><math><mrow><msub><mi>η</mi><mrow><mi>r</mi><mi>e</mi><mi>s</mi><mi>p</mi><mi>i</mi><mi>r</mi><mi>a</mi><mi>b</mi><mi>l</mi><mi>e</mi></mrow></msub></mrow></math></span>, is 50.3 %, with minimal variation across flow conditions. A lower inlet MMD of 2.2 μm yields higher <span><math><mrow><msub><mi>η</mi><mrow><mi>r</mi><mi>e</mi><mi>s</mi><mi>p</mi><mi>i</mi><mi>r</mi><mi>a</mi><mi>b</mi><mi>l</mi><mi>e</mi></mrow></msub></mrow></math></span> values (64.9–87.7 %), although with greater sensitivity to flow and polydispersity. These findings offer new insights into optimising aerosol drug delivery through tracheostomy airways.</div></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":\"191 \",\"pages\":\"Article 106694\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021850225001715\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850225001715","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

上呼吸道或下呼吸道感染患者吸入抗生素的管理有时是通过气管切开术进行的。然而,通过这种途径的精确给药仍然不确定,特别是在自主呼吸的儿科患者中。本研究使用计算流体动力学(CFD)来探索雾化药物通过理想的气管造口管的输送,重点关注液滴大小分布(多分散性)和呼吸流动条件如何影响药物输送效率。与之前的研究不同,该研究考虑了气管切开术管的紧凑几何形状,证明了在入口周围形成较早的涡流,导致液滴沿外壁沉积增加,靠近入口。因此,与其他90°管道的研究结果相比,随着速度的增加,传递效率η(即离开气管造口管的颗粒相对于入口速率的质量百分比)降低。该效率随着进口颗粒多分散性的增加而进一步降低。出口流中可呼吸飞沫的比例受进口质量中值直径(MMD)的强烈影响。当入口MMD为3.5 μm时,可呼吸飞沫的净传递效率为50.3%,不同流动条件下的变化最小。入口MMD为2.2 μm时,η呼吸值较高(64.9 ~ 87.7%),但对流动和多分散性的敏感性较高。这些发现为优化气管造口气道的气溶胶给药提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of aerosolised medicine delivery through tracheostomy airways
The administration of inhaled antibiotics to patients with upper or lower respiratory infections is sometimes conducted via a tracheostomy airway. However, precise dosing via this route remains uncertain, especially in spontaneously breathing paediatric patients. This study uses computational fluid dynamics (CFD) to explore the delivery of aerosolised medicine through an idealised tracheostomy tube, focussing on how droplet size distribution (polydispersity) and breathing flow conditions affect drug delivery efficiency. Unlike previous studies that incorporate elongated inlet and outlet sections to minimise flow disturbances, this work considers the compact geometry of tracheostomy tubes, demonstrating an earlier vortex formation around the inlet, resulting in an increased droplet deposition along the outer wall, closer to the inlet. As a result, the transfer efficiency, η (i.e. mass percentage of particles exiting the tracheostomy tube relative to the inlet rate), which decreases with increasing velocity, is found to be lower than those shown in other studies of 90° pipes. This efficiency further decreases with increased polydispersity of the inlet particles. The proportion of respirable droplets in the outlet stream is strongly influenced by the Mass Median Diameter (MMD) of the inlet. When the inlet MMD is 3.5 μm, the net transfer efficiency of respirable droplets, ηrespirable, is 50.3 %, with minimal variation across flow conditions. A lower inlet MMD of 2.2 μm yields higher ηrespirable values (64.9–87.7 %), although with greater sensitivity to flow and polydispersity. These findings offer new insights into optimising aerosol drug delivery through tracheostomy airways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信