在几个四元元变量中切片正则多项式的希尔伯特零定理的一个强版本

IF 0.8 2区 数学 Q2 MATHEMATICS
Anna Gori , Giulia Sarfatti , Fabio Vlacci
{"title":"在几个四元元变量中切片正则多项式的希尔伯特零定理的一个强版本","authors":"Anna Gori ,&nbsp;Giulia Sarfatti ,&nbsp;Fabio Vlacci","doi":"10.1016/j.jalgebra.2025.08.039","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove a strong version of the Hilbert Nullstellensatz in the ring <span><math><mi>H</mi><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> of slice regular polynomials in several quaternionic variables. Our proof deeply depends on a detailed analysis of the common zeros of slice regular polynomials which belong to an ideal in <span><math><mi>H</mi><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>. This study motivates the introduction of a new notion of algebraic set in the quaternionic setting, which allows us to define a Zariski-type topology on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 269-291"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strong version of the Hilbert Nullstellensatz for slice regular polynomials in several quaternionic variables\",\"authors\":\"Anna Gori ,&nbsp;Giulia Sarfatti ,&nbsp;Fabio Vlacci\",\"doi\":\"10.1016/j.jalgebra.2025.08.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we prove a strong version of the Hilbert Nullstellensatz in the ring <span><math><mi>H</mi><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> of slice regular polynomials in several quaternionic variables. Our proof deeply depends on a detailed analysis of the common zeros of slice regular polynomials which belong to an ideal in <span><math><mi>H</mi><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>. This study motivates the introduction of a new notion of algebraic set in the quaternionic setting, which allows us to define a Zariski-type topology on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 269-291\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005253\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005253","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了在若干四元数变量的片正则多项式环H[q1,…,qn]上Hilbert Nullstellensatz的一个强版本。我们的证明在很大程度上依赖于对H[q1,…,qn]中属于理想的片正则多项式的公共零的详细分析。本研究激发了在四元数环境中引入代数集的新概念,使我们能够在Hn上定义zariski型拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strong version of the Hilbert Nullstellensatz for slice regular polynomials in several quaternionic variables
In this paper we prove a strong version of the Hilbert Nullstellensatz in the ring H[q1,,qn] of slice regular polynomials in several quaternionic variables. Our proof deeply depends on a detailed analysis of the common zeros of slice regular polynomials which belong to an ideal in H[q1,,qn]. This study motivates the introduction of a new notion of algebraic set in the quaternionic setting, which allows us to define a Zariski-type topology on Hn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信