kagome-石墨烯膜的海水淡化和离子选择性

IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Rhayla M. Ferreira , Flávia C.A. Silva , Maria J.F. Silva , Rodrigo G. Amorim , Fábio A.L. de Souza , Fernando N.N. Pansini
{"title":"kagome-石墨烯膜的海水淡化和离子选择性","authors":"Rhayla M. Ferreira ,&nbsp;Flávia C.A. Silva ,&nbsp;Maria J.F. Silva ,&nbsp;Rodrigo G. Amorim ,&nbsp;Fábio A.L. de Souza ,&nbsp;Fernando N.N. Pansini","doi":"10.1016/j.desal.2025.119375","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructured membranes represent a cutting-edge solution at the forefront of addressing the global water crisis, with great potential to enable next-generation of water desalination technologies. In this scenario, this study investigates the potential of 2- and 3-triangulene Kagome-Graphene (KG) membranes for desalination using Molecular Dynamics (MD) simulations. Simulations were performed with sodium chloride (NaCl) solutions at concentrations of 0.5 M and 1.0 M, under external electric fields (EF) ranging from 0 to 0.53 V nm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. The results show that <figure><img></figure> ions exhibit greater mobility than <figure><img></figure> ions, depending of EF strength and the membrane. In higher fields, <figure><img></figure> and <figure><img></figure> migrate in opposite directions, with a nearly complete separation achieved at 0.53 V nm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. The 2-triangulene membrane exhibits superior ion rejection and selectivity compared to the 3-triangulene membrane, effectively inhibiting ion transport while maintaining water flux, even in the absence of an applied field. Both systems exhibit non-ohmic ionic transport across the entire spectrum of EF examined, although a transition to an ohmic regime is noted in the low-field limit. At EF <span><math><mo>&lt;</mo></math></span>0.18 V nm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, nearly complete ion rejection is observed in the 2-triangulene membrane, highlighting its high selectivity and potential for future desalination technologies.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"617 ","pages":"Article 119375"},"PeriodicalIF":9.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water desalination and ionic selectivity in kagome-graphene membranes\",\"authors\":\"Rhayla M. Ferreira ,&nbsp;Flávia C.A. Silva ,&nbsp;Maria J.F. Silva ,&nbsp;Rodrigo G. Amorim ,&nbsp;Fábio A.L. de Souza ,&nbsp;Fernando N.N. Pansini\",\"doi\":\"10.1016/j.desal.2025.119375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanostructured membranes represent a cutting-edge solution at the forefront of addressing the global water crisis, with great potential to enable next-generation of water desalination technologies. In this scenario, this study investigates the potential of 2- and 3-triangulene Kagome-Graphene (KG) membranes for desalination using Molecular Dynamics (MD) simulations. Simulations were performed with sodium chloride (NaCl) solutions at concentrations of 0.5 M and 1.0 M, under external electric fields (EF) ranging from 0 to 0.53 V nm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. The results show that <figure><img></figure> ions exhibit greater mobility than <figure><img></figure> ions, depending of EF strength and the membrane. In higher fields, <figure><img></figure> and <figure><img></figure> migrate in opposite directions, with a nearly complete separation achieved at 0.53 V nm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. The 2-triangulene membrane exhibits superior ion rejection and selectivity compared to the 3-triangulene membrane, effectively inhibiting ion transport while maintaining water flux, even in the absence of an applied field. Both systems exhibit non-ohmic ionic transport across the entire spectrum of EF examined, although a transition to an ohmic regime is noted in the low-field limit. At EF <span><math><mo>&lt;</mo></math></span>0.18 V nm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, nearly complete ion rejection is observed in the 2-triangulene membrane, highlighting its high selectivity and potential for future desalination technologies.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"617 \",\"pages\":\"Article 119375\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916425008513\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425008513","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米结构膜代表了解决全球水危机的前沿解决方案,具有实现下一代海水淡化技术的巨大潜力。在这种情况下,本研究利用分子动力学(MD)模拟研究了2-和3-三角烯kagome -石墨烯(KG)膜用于海水淡化的潜力。在0.5 M和1.0 M浓度的氯化钠溶液中,在0 ~ 0.53 V nm−1的外电场(EF)下进行了模拟。结果表明,离子比离子表现出更大的迁移率,这取决于EF强度和膜。在更高的电场中,和向相反方向迁移,在0.53 V nm−1时几乎完全分离。与3-三角烯膜相比,2-三角烯膜表现出更好的离子抑制和选择性,即使在没有电场的情况下,也能有效地抑制离子运输,同时保持水通量。这两种体系都表现出非欧姆离子输运,尽管在低场极限中注意到向欧姆状态的过渡。在EF <;0.18 V nm - 1下,2-三角烯膜几乎完全抑制了离子,突出了其高选择性和未来脱盐技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Water desalination and ionic selectivity in kagome-graphene membranes

Water desalination and ionic selectivity in kagome-graphene membranes
Nanostructured membranes represent a cutting-edge solution at the forefront of addressing the global water crisis, with great potential to enable next-generation of water desalination technologies. In this scenario, this study investigates the potential of 2- and 3-triangulene Kagome-Graphene (KG) membranes for desalination using Molecular Dynamics (MD) simulations. Simulations were performed with sodium chloride (NaCl) solutions at concentrations of 0.5 M and 1.0 M, under external electric fields (EF) ranging from 0 to 0.53 V nm1. The results show that
ions exhibit greater mobility than
ions, depending of EF strength and the membrane. In higher fields,
and
migrate in opposite directions, with a nearly complete separation achieved at 0.53 V nm1. The 2-triangulene membrane exhibits superior ion rejection and selectivity compared to the 3-triangulene membrane, effectively inhibiting ion transport while maintaining water flux, even in the absence of an applied field. Both systems exhibit non-ohmic ionic transport across the entire spectrum of EF examined, although a transition to an ohmic regime is noted in the low-field limit. At EF <0.18 V nm1, nearly complete ion rejection is observed in the 2-triangulene membrane, highlighting its high selectivity and potential for future desalination technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信