基于互易边界元快速多极子方法的高分辨率MEG源估计

IF 4.5 2区 医学 Q1 NEUROIMAGING
Guillermo Núñez Ponasso , Derek A. Drumm , Abbie Wang , Gregory M. Noetscher , Matti Hämäläinen , Thomas R. Knösche , Burkhard Maess , Jens Haueisen , Sergey N. Makaroff , Tommi Raij
{"title":"基于互易边界元快速多极子方法的高分辨率MEG源估计","authors":"Guillermo Núñez Ponasso ,&nbsp;Derek A. Drumm ,&nbsp;Abbie Wang ,&nbsp;Gregory M. Noetscher ,&nbsp;Matti Hämäläinen ,&nbsp;Thomas R. Knösche ,&nbsp;Burkhard Maess ,&nbsp;Jens Haueisen ,&nbsp;Sergey N. Makaroff ,&nbsp;Tommi Raij","doi":"10.1016/j.neuroimage.2025.121452","DOIUrl":null,"url":null,"abstract":"<div><div><em>Magnetoencephalographic</em> (MEG) source estimation relies on the computation of the gain (lead-field) matrix, which embodies the linear relationship between the amplitudes of the sources and the recorded signals. However, with a realistic forward model, the calculation of the gain matrix in a “direct” fashion is a computationally expensive task, forcing the number of dipolar sources in standard MEG pipelines to be typically limited to 10,000. We propose a fast computational approach to calculate the gain matrix, which is based on the reciprocal relationship between MEG and transcranial magnetic stimulation (TMS), and which we couple with the charge-based boundary element fast multipole method (BEM-FMM). Our method allows us to efficiently generate gain matrices for high-resolution multi-layer non-nested meshes involving source spaces of up to 1 million dipoles. We employed the gain matrices generated with our approach to perform minimum norm estimate (MNE) source localization against simulated data (at varying noise levels) and experimental MEG data of evoked somatosensory fields elicited by right-hand median nerve stimulation on 5 healthy participants. Additionally, we compare our experimental source estimates against the standard 1- and 3-layer BEM models of the MNE-Python source estimation pipeline, and against a 3-layer isotropic FEM model.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"320 ","pages":"Article 121452"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-definition MEG source estimation using the reciprocal boundary element fast multipole method\",\"authors\":\"Guillermo Núñez Ponasso ,&nbsp;Derek A. Drumm ,&nbsp;Abbie Wang ,&nbsp;Gregory M. Noetscher ,&nbsp;Matti Hämäläinen ,&nbsp;Thomas R. Knösche ,&nbsp;Burkhard Maess ,&nbsp;Jens Haueisen ,&nbsp;Sergey N. Makaroff ,&nbsp;Tommi Raij\",\"doi\":\"10.1016/j.neuroimage.2025.121452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Magnetoencephalographic</em> (MEG) source estimation relies on the computation of the gain (lead-field) matrix, which embodies the linear relationship between the amplitudes of the sources and the recorded signals. However, with a realistic forward model, the calculation of the gain matrix in a “direct” fashion is a computationally expensive task, forcing the number of dipolar sources in standard MEG pipelines to be typically limited to 10,000. We propose a fast computational approach to calculate the gain matrix, which is based on the reciprocal relationship between MEG and transcranial magnetic stimulation (TMS), and which we couple with the charge-based boundary element fast multipole method (BEM-FMM). Our method allows us to efficiently generate gain matrices for high-resolution multi-layer non-nested meshes involving source spaces of up to 1 million dipoles. We employed the gain matrices generated with our approach to perform minimum norm estimate (MNE) source localization against simulated data (at varying noise levels) and experimental MEG data of evoked somatosensory fields elicited by right-hand median nerve stimulation on 5 healthy participants. Additionally, we compare our experimental source estimates against the standard 1- and 3-layer BEM models of the MNE-Python source estimation pipeline, and against a 3-layer isotropic FEM model.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"320 \",\"pages\":\"Article 121452\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811925004550\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925004550","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

脑磁图(MEG)源估计依赖于增益(引线场)矩阵的计算,该矩阵体现了源振幅与记录信号之间的线性关系。然而,对于现实的正演模型,以“直接”方式计算增益矩阵是一项计算成本高昂的任务,迫使标准MEG管道中的偶极源数量通常限制在10,000。基于脑磁图与经颅磁刺激(TMS)之间的互反关系,提出了一种快速计算增益矩阵的方法,并将其与基于电荷的边界元快速多极法(BEM-FMM)耦合。我们的方法使我们能够有效地为涉及多达100万个偶极子的源空间的高分辨率多层非嵌套网格生成增益矩阵。我们利用该方法生成的增益矩阵,对5名健康参与者的右手正中神经刺激诱发的体感觉场的模拟数据(在不同噪声水平下)和实验MEG数据进行最小规范估计(MNE)源定位。此外,我们将我们的实验源估计与MNE-Python源估计管道的标准1层和3层BEM模型以及3层各向同性FEM模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-definition MEG source estimation using the reciprocal boundary element fast multipole method
Magnetoencephalographic (MEG) source estimation relies on the computation of the gain (lead-field) matrix, which embodies the linear relationship between the amplitudes of the sources and the recorded signals. However, with a realistic forward model, the calculation of the gain matrix in a “direct” fashion is a computationally expensive task, forcing the number of dipolar sources in standard MEG pipelines to be typically limited to 10,000. We propose a fast computational approach to calculate the gain matrix, which is based on the reciprocal relationship between MEG and transcranial magnetic stimulation (TMS), and which we couple with the charge-based boundary element fast multipole method (BEM-FMM). Our method allows us to efficiently generate gain matrices for high-resolution multi-layer non-nested meshes involving source spaces of up to 1 million dipoles. We employed the gain matrices generated with our approach to perform minimum norm estimate (MNE) source localization against simulated data (at varying noise levels) and experimental MEG data of evoked somatosensory fields elicited by right-hand median nerve stimulation on 5 healthy participants. Additionally, we compare our experimental source estimates against the standard 1- and 3-layer BEM models of the MNE-Python source estimation pipeline, and against a 3-layer isotropic FEM model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信