Li3MX6新型固态电解质的计算筛选

IF 14.9 1区 化学 Q1 Energy
Olgert L. Dallakyan , Alexey P. Maltsev , Ilya V. Chepkasov , Misha A. Aghamalyan , Areg A. Hunanyan , Nane Z. Petrosyan , Mikayel S. Chobanyan , Mikayel T. Sahakyan , Luiza G. Khachatryan , Artem R. Oganov , Hayk A. Zakaryan
{"title":"Li3MX6新型固态电解质的计算筛选","authors":"Olgert L. Dallakyan ,&nbsp;Alexey P. Maltsev ,&nbsp;Ilya V. Chepkasov ,&nbsp;Misha A. Aghamalyan ,&nbsp;Areg A. Hunanyan ,&nbsp;Nane Z. Petrosyan ,&nbsp;Mikayel S. Chobanyan ,&nbsp;Mikayel T. Sahakyan ,&nbsp;Luiza G. Khachatryan ,&nbsp;Artem R. Oganov ,&nbsp;Hayk A. Zakaryan","doi":"10.1016/j.jechem.2025.08.047","DOIUrl":null,"url":null,"abstract":"<div><div>Halide solid-state electrolytes have gained significant attention in recent years due to their high ionic conductivity, making them promising candidates for future all-solid-state batteries. Recent studies have identified numerous crystal structures with the <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>M</mi><msub><mi>X</mi><mn>6</mn></msub></mrow></math></span> composition, although many remain unexplored across various chemical systems. In this research, we developed a comprehensive method to examine all conceivable space groups and structures within the <span><math><mrow><mi>L</mi><mi>i</mi><mo>-</mo><mi>M</mi><mo>-</mo><mi>X</mi></mrow></math></span> system, where M includes In, Ga, and La, and X includes F, Cl, Br, and I. Our findings revealed two metastable structures: <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>F</mi><mn>6</mn></msub></mrow></math></span> with <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>¯</mo></mrow></mover><mi>c</mi><mn>1</mn></mrow></math></span> symmetry and <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>I</mi><mn>6</mn></msub></mrow></math></span> with <span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>c</mi></mrow></math></span> symmetry, exhibiting ionic conductivities of 0.55 and 2.18 mS/cm at 300 K, respectively. Notably, the trigonal symmetry of <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>F</mi><mn>6</mn></msub></mrow></math></span> demonstrates that high ionic conductivities are not limited to monoclinic structures but can also be achieved with trigonal symmetries. The electrochemical stability windows, mechanical properties, and reaction energies of these materials with known cathodes suggest their potential for use in all-solid-state batteries. Additionally, we predicted the stability of novel materials, including <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><mi>C</mi><msub><mi>l</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><mi>B</mi><msub><mi>r</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><msub><mi>I</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><mi>C</mi><msub><mi>l</mi><mn>9</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><mi>B</mi><msub><mi>r</mi><mn>9</mn></msub></mrow></math></span>, and <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><msub><mi>I</mi><mn>9</mn></msub></mrow></math></span>.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"112 ","pages":"Pages 495-504"},"PeriodicalIF":14.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational screening for novel solid-state electrolytes in Li3MX6 composition\",\"authors\":\"Olgert L. Dallakyan ,&nbsp;Alexey P. Maltsev ,&nbsp;Ilya V. Chepkasov ,&nbsp;Misha A. Aghamalyan ,&nbsp;Areg A. Hunanyan ,&nbsp;Nane Z. Petrosyan ,&nbsp;Mikayel S. Chobanyan ,&nbsp;Mikayel T. Sahakyan ,&nbsp;Luiza G. Khachatryan ,&nbsp;Artem R. Oganov ,&nbsp;Hayk A. Zakaryan\",\"doi\":\"10.1016/j.jechem.2025.08.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Halide solid-state electrolytes have gained significant attention in recent years due to their high ionic conductivity, making them promising candidates for future all-solid-state batteries. Recent studies have identified numerous crystal structures with the <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>M</mi><msub><mi>X</mi><mn>6</mn></msub></mrow></math></span> composition, although many remain unexplored across various chemical systems. In this research, we developed a comprehensive method to examine all conceivable space groups and structures within the <span><math><mrow><mi>L</mi><mi>i</mi><mo>-</mo><mi>M</mi><mo>-</mo><mi>X</mi></mrow></math></span> system, where M includes In, Ga, and La, and X includes F, Cl, Br, and I. Our findings revealed two metastable structures: <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>F</mi><mn>6</mn></msub></mrow></math></span> with <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>¯</mo></mrow></mover><mi>c</mi><mn>1</mn></mrow></math></span> symmetry and <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>I</mi><mn>6</mn></msub></mrow></math></span> with <span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>c</mi></mrow></math></span> symmetry, exhibiting ionic conductivities of 0.55 and 2.18 mS/cm at 300 K, respectively. Notably, the trigonal symmetry of <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>F</mi><mn>6</mn></msub></mrow></math></span> demonstrates that high ionic conductivities are not limited to monoclinic structures but can also be achieved with trigonal symmetries. The electrochemical stability windows, mechanical properties, and reaction energies of these materials with known cathodes suggest their potential for use in all-solid-state batteries. Additionally, we predicted the stability of novel materials, including <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><mi>C</mi><msub><mi>l</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><mi>B</mi><msub><mi>r</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><msub><mi>I</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><mi>C</mi><msub><mi>l</mi><mn>9</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><mi>B</mi><msub><mi>r</mi><mn>9</mn></msub></mrow></math></span>, and <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><msub><mi>I</mi><mn>9</mn></msub></mrow></math></span>.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"112 \",\"pages\":\"Pages 495-504\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625007077\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625007077","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

卤化物固态电解质由于其高离子导电性,近年来获得了广泛的关注,使其成为未来全固态电池的有希望的候选者。最近的研究已经确定了Li3MX6组成的许多晶体结构,尽管在各种化学系统中仍有许多未被探索。在这项研究中,我们开发了一种综合的方法来检查Li-M-X体系中所有可能的空间群和结构,其中M包括In, Ga和La, X包括F, Cl, Br和i。我们的研究结果揭示了两种亚稳结构:具有P3¯c1对称性的Li3InF6和具有C2/c对称性的Li3InI6,在300 K下分别表现出0.55和2.18 mS/cm的离子电导率。值得注意的是,Li3InF6的三角对称表明,高离子电导率不仅限于单斜结构,也可以通过三角对称来实现。具有已知阴极的这些材料的电化学稳定窗口、机械性能和反应能表明它们在全固态电池中的应用潜力。此外,我们还预测了Li5InCl8、Li5InBr8、Li5InI8、LiIn2Cl9、LiIn2Br9和LiIn2I9等新型材料的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational screening for novel solid-state electrolytes in Li3MX6 composition

Computational screening for novel solid-state electrolytes in Li3MX6 composition
Halide solid-state electrolytes have gained significant attention in recent years due to their high ionic conductivity, making them promising candidates for future all-solid-state batteries. Recent studies have identified numerous crystal structures with the Li3MX6 composition, although many remain unexplored across various chemical systems. In this research, we developed a comprehensive method to examine all conceivable space groups and structures within the Li-M-X system, where M includes In, Ga, and La, and X includes F, Cl, Br, and I. Our findings revealed two metastable structures: Li3InF6 with P3¯c1 symmetry and Li3InI6 with C2/c symmetry, exhibiting ionic conductivities of 0.55 and 2.18 mS/cm at 300 K, respectively. Notably, the trigonal symmetry of Li3InF6 demonstrates that high ionic conductivities are not limited to monoclinic structures but can also be achieved with trigonal symmetries. The electrochemical stability windows, mechanical properties, and reaction energies of these materials with known cathodes suggest their potential for use in all-solid-state batteries. Additionally, we predicted the stability of novel materials, including Li5InCl8, Li5InBr8, Li5InI8, LiIn2Cl9, LiIn2Br9, and LiIn2I9.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信