Olgert L. Dallakyan , Alexey P. Maltsev , Ilya V. Chepkasov , Misha A. Aghamalyan , Areg A. Hunanyan , Nane Z. Petrosyan , Mikayel S. Chobanyan , Mikayel T. Sahakyan , Luiza G. Khachatryan , Artem R. Oganov , Hayk A. Zakaryan
{"title":"Li3MX6新型固态电解质的计算筛选","authors":"Olgert L. Dallakyan , Alexey P. Maltsev , Ilya V. Chepkasov , Misha A. Aghamalyan , Areg A. Hunanyan , Nane Z. Petrosyan , Mikayel S. Chobanyan , Mikayel T. Sahakyan , Luiza G. Khachatryan , Artem R. Oganov , Hayk A. Zakaryan","doi":"10.1016/j.jechem.2025.08.047","DOIUrl":null,"url":null,"abstract":"<div><div>Halide solid-state electrolytes have gained significant attention in recent years due to their high ionic conductivity, making them promising candidates for future all-solid-state batteries. Recent studies have identified numerous crystal structures with the <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>M</mi><msub><mi>X</mi><mn>6</mn></msub></mrow></math></span> composition, although many remain unexplored across various chemical systems. In this research, we developed a comprehensive method to examine all conceivable space groups and structures within the <span><math><mrow><mi>L</mi><mi>i</mi><mo>-</mo><mi>M</mi><mo>-</mo><mi>X</mi></mrow></math></span> system, where M includes In, Ga, and La, and X includes F, Cl, Br, and I. Our findings revealed two metastable structures: <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>F</mi><mn>6</mn></msub></mrow></math></span> with <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>¯</mo></mrow></mover><mi>c</mi><mn>1</mn></mrow></math></span> symmetry and <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>I</mi><mn>6</mn></msub></mrow></math></span> with <span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>c</mi></mrow></math></span> symmetry, exhibiting ionic conductivities of 0.55 and 2.18 mS/cm at 300 K, respectively. Notably, the trigonal symmetry of <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>F</mi><mn>6</mn></msub></mrow></math></span> demonstrates that high ionic conductivities are not limited to monoclinic structures but can also be achieved with trigonal symmetries. The electrochemical stability windows, mechanical properties, and reaction energies of these materials with known cathodes suggest their potential for use in all-solid-state batteries. Additionally, we predicted the stability of novel materials, including <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><mi>C</mi><msub><mi>l</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><mi>B</mi><msub><mi>r</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><msub><mi>I</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><mi>C</mi><msub><mi>l</mi><mn>9</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><mi>B</mi><msub><mi>r</mi><mn>9</mn></msub></mrow></math></span>, and <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><msub><mi>I</mi><mn>9</mn></msub></mrow></math></span>.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"112 ","pages":"Pages 495-504"},"PeriodicalIF":14.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational screening for novel solid-state electrolytes in Li3MX6 composition\",\"authors\":\"Olgert L. Dallakyan , Alexey P. Maltsev , Ilya V. Chepkasov , Misha A. Aghamalyan , Areg A. Hunanyan , Nane Z. Petrosyan , Mikayel S. Chobanyan , Mikayel T. Sahakyan , Luiza G. Khachatryan , Artem R. Oganov , Hayk A. Zakaryan\",\"doi\":\"10.1016/j.jechem.2025.08.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Halide solid-state electrolytes have gained significant attention in recent years due to their high ionic conductivity, making them promising candidates for future all-solid-state batteries. Recent studies have identified numerous crystal structures with the <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>M</mi><msub><mi>X</mi><mn>6</mn></msub></mrow></math></span> composition, although many remain unexplored across various chemical systems. In this research, we developed a comprehensive method to examine all conceivable space groups and structures within the <span><math><mrow><mi>L</mi><mi>i</mi><mo>-</mo><mi>M</mi><mo>-</mo><mi>X</mi></mrow></math></span> system, where M includes In, Ga, and La, and X includes F, Cl, Br, and I. Our findings revealed two metastable structures: <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>F</mi><mn>6</mn></msub></mrow></math></span> with <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>¯</mo></mrow></mover><mi>c</mi><mn>1</mn></mrow></math></span> symmetry and <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>I</mi><mn>6</mn></msub></mrow></math></span> with <span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>c</mi></mrow></math></span> symmetry, exhibiting ionic conductivities of 0.55 and 2.18 mS/cm at 300 K, respectively. Notably, the trigonal symmetry of <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>3</mn></msub><mi>I</mi><mi>n</mi><msub><mi>F</mi><mn>6</mn></msub></mrow></math></span> demonstrates that high ionic conductivities are not limited to monoclinic structures but can also be achieved with trigonal symmetries. The electrochemical stability windows, mechanical properties, and reaction energies of these materials with known cathodes suggest their potential for use in all-solid-state batteries. Additionally, we predicted the stability of novel materials, including <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><mi>C</mi><msub><mi>l</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><mi>B</mi><msub><mi>r</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><msub><mi>i</mi><mn>5</mn></msub><mi>I</mi><mi>n</mi><msub><mi>I</mi><mn>8</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><mi>C</mi><msub><mi>l</mi><mn>9</mn></msub></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><mi>B</mi><msub><mi>r</mi><mn>9</mn></msub></mrow></math></span>, and <span><math><mrow><mi>L</mi><mi>i</mi><mi>I</mi><msub><mi>n</mi><mn>2</mn></msub><msub><mi>I</mi><mn>9</mn></msub></mrow></math></span>.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"112 \",\"pages\":\"Pages 495-504\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625007077\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625007077","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
Computational screening for novel solid-state electrolytes in Li3MX6 composition
Halide solid-state electrolytes have gained significant attention in recent years due to their high ionic conductivity, making them promising candidates for future all-solid-state batteries. Recent studies have identified numerous crystal structures with the composition, although many remain unexplored across various chemical systems. In this research, we developed a comprehensive method to examine all conceivable space groups and structures within the system, where M includes In, Ga, and La, and X includes F, Cl, Br, and I. Our findings revealed two metastable structures: with symmetry and with symmetry, exhibiting ionic conductivities of 0.55 and 2.18 mS/cm at 300 K, respectively. Notably, the trigonal symmetry of demonstrates that high ionic conductivities are not limited to monoclinic structures but can also be achieved with trigonal symmetries. The electrochemical stability windows, mechanical properties, and reaction energies of these materials with known cathodes suggest their potential for use in all-solid-state batteries. Additionally, we predicted the stability of novel materials, including , , , , , and .
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy