图的韧性、哈密性和特征值

IF 0.7 3区 数学 Q2 MATHEMATICS
Hongzhang Chen , Jianxi Li , Shou-Jun Xu
{"title":"图的韧性、哈密性和特征值","authors":"Hongzhang Chen ,&nbsp;Jianxi Li ,&nbsp;Shou-Jun Xu","doi":"10.1016/j.disc.2025.114806","DOIUrl":null,"url":null,"abstract":"<div><div>For a real number <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, we say a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is <em>t</em>-tough if <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mi>t</mi><mo>⋅</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></math></span> for all <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span>, where <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></math></span> is the number of components of <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span>. The toughness <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the maximum <em>t</em> for which <em>G</em> is <em>t</em>-tough. Firstly, we provide a lower bound for <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> in terms of its normalized Laplacian eigenvalues, improving or generalizing known lower bounds established by Huang, Das and Zhu (2022), Gu (2021) and Zhang (2023). We also derive upper bounds for certain eigenvalues in a regular graph to ensure that the graph is <em>t</em>-tough, where <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac></math></span> is an integer, which extends the related result of Cioabă and Wong (2014). Additionally, we establish a sufficient condition involving the number of <em>r</em>-cliques to ensure the existence of a Hamiltonian cycle in a <em>t</em>-tough graph, where <em>r</em> is an integer with <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, which improves upon the sufficient condition based on the number of edges proposed by Cai, Yu, Xu and Yu (2022). Finally, we provide a spectral condition to guarantee the existence of a Hamiltonian cycle in <em>t</em>-tough graphs, thereby addressing the problem posed by Fan, Lin and Lu (2023) for integers <span><math><mi>t</mi><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114806"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toughness, Hamiltonicity and eigenvalues of graphs\",\"authors\":\"Hongzhang Chen ,&nbsp;Jianxi Li ,&nbsp;Shou-Jun Xu\",\"doi\":\"10.1016/j.disc.2025.114806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a real number <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, we say a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is <em>t</em>-tough if <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mi>t</mi><mo>⋅</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></math></span> for all <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span>, where <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></math></span> is the number of components of <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span>. The toughness <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the maximum <em>t</em> for which <em>G</em> is <em>t</em>-tough. Firstly, we provide a lower bound for <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> in terms of its normalized Laplacian eigenvalues, improving or generalizing known lower bounds established by Huang, Das and Zhu (2022), Gu (2021) and Zhang (2023). We also derive upper bounds for certain eigenvalues in a regular graph to ensure that the graph is <em>t</em>-tough, where <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac></math></span> is an integer, which extends the related result of Cioabă and Wong (2014). Additionally, we establish a sufficient condition involving the number of <em>r</em>-cliques to ensure the existence of a Hamiltonian cycle in a <em>t</em>-tough graph, where <em>r</em> is an integer with <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, which improves upon the sufficient condition based on the number of edges proposed by Cai, Yu, Xu and Yu (2022). Finally, we provide a spectral condition to guarantee the existence of a Hamiltonian cycle in <em>t</em>-tough graphs, thereby addressing the problem posed by Fan, Lin and Lu (2023) for integers <span><math><mi>t</mi><mo>≥</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114806\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004145\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004145","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于实数t≥0,当c(G−S)≥2时,对于所有的S蔓生V(G),如果|S|≥t⋅c(G−S),我们称图G=(V,E)为t-tough,其中c(G−S)为G−S的分量个数。G的韧性τ(G)是使G为t韧性的最大t。首先,我们根据τ(G)的归一化拉普拉斯特征值提供了一个下界,改进或推广了Huang、Das和Zhu(2022)、Gu(2021)和Zhang(2023)建立的已知下界。我们还推导了正则图中某些特征值的上界,以确保图是t-tough的,其中1t为整数,扩展了cioabei and Wong(2014)的相关结果。另外,在Cai, Yu, Xu和Yu(2022)提出的边数充分条件的基础上,我们建立了t-tough图中r为r≥2的整数的r-团数的充分条件,保证了t-tough图中哈密顿循环存在。最后,我们给出了t-tough图中哈密顿循环存在的谱条件,从而解决了Fan, Lin和Lu(2023)对整数t≥1提出的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toughness, Hamiltonicity and eigenvalues of graphs
For a real number t0, we say a graph G=(V,E) is t-tough if |S|tc(GS) for all SV(G) with c(GS)2, where c(GS) is the number of components of GS. The toughness τ(G) of G is the maximum t for which G is t-tough. Firstly, we provide a lower bound for τ(G) in terms of its normalized Laplacian eigenvalues, improving or generalizing known lower bounds established by Huang, Das and Zhu (2022), Gu (2021) and Zhang (2023). We also derive upper bounds for certain eigenvalues in a regular graph to ensure that the graph is t-tough, where 1t is an integer, which extends the related result of Cioabă and Wong (2014). Additionally, we establish a sufficient condition involving the number of r-cliques to ensure the existence of a Hamiltonian cycle in a t-tough graph, where r is an integer with r2, which improves upon the sufficient condition based on the number of edges proposed by Cai, Yu, Xu and Yu (2022). Finally, we provide a spectral condition to guarantee the existence of a Hamiltonian cycle in t-tough graphs, thereby addressing the problem posed by Fan, Lin and Lu (2023) for integers t1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信