Collatz高周期不存在

IF 0.7 3区 数学 Q2 MATHEMATICS
Kevin Knight
{"title":"Collatz高周期不存在","authors":"Kevin Knight","doi":"10.1016/j.disc.2025.114812","DOIUrl":null,"url":null,"abstract":"<div><div>The Collatz function takes odd <em>n</em> to <span><math><mo>(</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> and even <em>n</em> to <span><math><mi>n</mi><mo>/</mo><mn>2</mn></math></span>. Under the iterated Collatz function, every positive integer is conjectured to end up in the trivial cycle 1-2-1. Two types of rational Collatz cycles are of special interest. Consider the set <span><math><mi>S</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> consisting of the smallest members of <em>k</em>-length cycles with <em>x</em> odd terms. The <em>circuit</em> contains the smallest member of <span><math><mi>S</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span>, while the <em>high cycle</em> contains the largest. It is known that no circuits of positive integers exist (except 1-2-1); this paper shows that there are likewise no high cycles of positive integers.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114812"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collatz high cycles do not exist\",\"authors\":\"Kevin Knight\",\"doi\":\"10.1016/j.disc.2025.114812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Collatz function takes odd <em>n</em> to <span><math><mo>(</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> and even <em>n</em> to <span><math><mi>n</mi><mo>/</mo><mn>2</mn></math></span>. Under the iterated Collatz function, every positive integer is conjectured to end up in the trivial cycle 1-2-1. Two types of rational Collatz cycles are of special interest. Consider the set <span><math><mi>S</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> consisting of the smallest members of <em>k</em>-length cycles with <em>x</em> odd terms. The <em>circuit</em> contains the smallest member of <span><math><mi>S</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span>, while the <em>high cycle</em> contains the largest. It is known that no circuits of positive integers exist (except 1-2-1); this paper shows that there are likewise no high cycles of positive integers.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114812\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004200\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004200","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Collatz函数取奇数n到(3n+1)/2和偶数n到n/2。在迭代Collatz函数下,每个正整数都被推测在平凡循环1-2-1中结束。有两种类型的有理Collatz循环特别有趣。考虑一个集合S(k,x),它由长度为k的循环中x个奇数项的最小成员组成。电路包含S(k,x)中最小的成员,而高周期包含最大的成员。已知不存在正整数回路(除了1-2-1);本文还证明了正整数也不存在高环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collatz high cycles do not exist
The Collatz function takes odd n to (3n+1)/2 and even n to n/2. Under the iterated Collatz function, every positive integer is conjectured to end up in the trivial cycle 1-2-1. Two types of rational Collatz cycles are of special interest. Consider the set S(k,x) consisting of the smallest members of k-length cycles with x odd terms. The circuit contains the smallest member of S(k,x), while the high cycle contains the largest. It is known that no circuits of positive integers exist (except 1-2-1); this paper shows that there are likewise no high cycles of positive integers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信