Nguyen Huu Huy Phuc , Anh-Tu Tran , Viet-Toan Tran , Vinh-Dat Vuong , Pham Tan Thi
{"title":"机械化学合成ali3掺杂Li4SnS4非晶固体电解质中离子电导率和弛豫的研究","authors":"Nguyen Huu Huy Phuc , Anh-Tu Tran , Viet-Toan Tran , Vinh-Dat Vuong , Pham Tan Thi","doi":"10.1016/j.jssc.2025.125679","DOIUrl":null,"url":null,"abstract":"<div><div>Amorphous (100-x)Li<sub>4</sub>SnS<sub>4</sub>−xAlI<sub>3</sub> solid electrolytes (SEs) were prepared via mechanochemical synthesis to study the effect of AlI<sub>3</sub> doping on the ionic conductivity and Li-ion dynamics in amorphous Li<sub>4</sub>SnS<sub>4</sub>. The structure of the samples was characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The ionic conductivity of amorphous 93.33Li<sub>4</sub>SnS<sub>4</sub>-6.67AlI<sub>3</sub> was ∼1.2 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C, comparable to that of reported Li<sub>4</sub>SnS<sub>4</sub>-based SEs. The effect of AlI<sub>3</sub> doping on the conductivity and dielectric properties of the samples was studied through alternating current (AC) impedance spectroscopy analysis. The conductivity analysis suggested that ion formation was the main contributor to the conductivity barrier in the prepared SEs. The developed strategy improved the ionic conductivity of the amorphous Li<sub>4</sub>SnS<sub>4</sub> solid electrolyte.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"353 ","pages":"Article 125679"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of ionic conductivity and relaxation in mechanochemical synthesized AlI3-doped Li4SnS4 amorphous solid electrolyte\",\"authors\":\"Nguyen Huu Huy Phuc , Anh-Tu Tran , Viet-Toan Tran , Vinh-Dat Vuong , Pham Tan Thi\",\"doi\":\"10.1016/j.jssc.2025.125679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amorphous (100-x)Li<sub>4</sub>SnS<sub>4</sub>−xAlI<sub>3</sub> solid electrolytes (SEs) were prepared via mechanochemical synthesis to study the effect of AlI<sub>3</sub> doping on the ionic conductivity and Li-ion dynamics in amorphous Li<sub>4</sub>SnS<sub>4</sub>. The structure of the samples was characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The ionic conductivity of amorphous 93.33Li<sub>4</sub>SnS<sub>4</sub>-6.67AlI<sub>3</sub> was ∼1.2 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C, comparable to that of reported Li<sub>4</sub>SnS<sub>4</sub>-based SEs. The effect of AlI<sub>3</sub> doping on the conductivity and dielectric properties of the samples was studied through alternating current (AC) impedance spectroscopy analysis. The conductivity analysis suggested that ion formation was the main contributor to the conductivity barrier in the prepared SEs. The developed strategy improved the ionic conductivity of the amorphous Li<sub>4</sub>SnS<sub>4</sub> solid electrolyte.</div></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"353 \",\"pages\":\"Article 125679\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459625005031\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625005031","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
采用机械化学合成方法制备了非晶(100-x)Li4SnS4−xAlI3固体电解质(SEs),研究了AlI3掺杂对非晶Li4SnS4离子电导率和锂离子动力学的影响。采用x射线衍射(XRD)、拉曼光谱(Raman spectroscopy)、扫描电镜-能谱(SEM-EDS)和透射电镜-能谱(TEM-EDS)对样品进行了结构表征。在30°C时,93.33Li4SnS4-6.67AlI3的离子电导率为~ 1.2 × 10−4 S cm−1,与已有报道的基于li4sns4的se相当。通过交流阻抗谱分析研究了AlI3掺杂对样品电导率和介电性能的影响。电导率分析表明,离子形成是制备的se中电导率屏障的主要贡献者。所开发的策略提高了非晶Li4SnS4固体电解质的离子电导率。
Investigation of ionic conductivity and relaxation in mechanochemical synthesized AlI3-doped Li4SnS4 amorphous solid electrolyte
Amorphous (100-x)Li4SnS4−xAlI3 solid electrolytes (SEs) were prepared via mechanochemical synthesis to study the effect of AlI3 doping on the ionic conductivity and Li-ion dynamics in amorphous Li4SnS4. The structure of the samples was characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The ionic conductivity of amorphous 93.33Li4SnS4-6.67AlI3 was ∼1.2 × 10−4 S cm−1 at 30 °C, comparable to that of reported Li4SnS4-based SEs. The effect of AlI3 doping on the conductivity and dielectric properties of the samples was studied through alternating current (AC) impedance spectroscopy analysis. The conductivity analysis suggested that ion formation was the main contributor to the conductivity barrier in the prepared SEs. The developed strategy improved the ionic conductivity of the amorphous Li4SnS4 solid electrolyte.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.